tetrad formulation
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Laurent Freidel ◽  
Marc Geiller ◽  
Daniele Pranzetti

Abstract In the tetrad formulation of gravity, the so-called simplicity constraints play a central role. They appear in the Hamiltonian analysis of the theory, and in the Lagrangian path integral when constructing the gravity partition function from topological BF theory. We develop here a systematic analysis of the corner symplectic structure encoding the symmetry algebra of gravity, and perform a thorough analysis of the simplicity constraints. Starting from a precursor phase space with Poincaré and Heisenberg symmetry, we obtain the corner phase space of BF theory by imposing kinematical constraints. This amounts to fixing the Heisenberg frame with a choice of position and spin operators. The simplicity constraints then further reduce the Poincaré symmetry of the BF phase space to a Lorentz subalgebra. This picture provides a particle-like description of (quantum) geometry: the internal normal plays the role of the four-momentum, the Barbero-Immirzi parameter that of the mass, the flux that of a relativistic position, and the frame that of a spin harmonic oscillator. Moreover, we show that the corner area element corresponds to the Poincaré spin Casimir. We achieve this central result by properly splitting, in the continuum, the corner simplicity constraints into first and second class parts. We construct the complete set of Dirac observables, which includes the generators of the local $$ \mathfrak{sl}\left(2,\mathrm{\mathbb{C}}\right) $$ sl 2 ℂ subalgebra of Poincaré, and the components of the tangential corner metric satisfying an $$ \mathfrak{sl}\left(2,\mathrm{\mathbb{R}}\right) $$ sl 2 ℝ algebra. We then present a preliminary analysis of the covariant and continuous irreducible representations of the infinite-dimensional corner algebra. Moreover, as an alternative path to quantization, we also introduce a regularization of the corner algebra and interpret this discrete setting in terms of an extended notion of twisted geometries.


2018 ◽  
Vol 65 (1) ◽  
pp. 65 ◽  
Author(s):  
Shahen Hacyan

It is shown that the Riemann-Silberstein vector, defined as ${\bf E} + i{\bf B}$, appears naturally in the $SL(2,C)$ algebraic representation of the electromagnetic field. Accordingly, a compact form of the Maxwell equations is obtained in terms of Dirac matrices, in combination with the null-tetrad formulation of general relativity. The formalism is fully covariant; an explicit form of the covariant derivatives is presented in terms of the Fock coefficients.


2012 ◽  
Vol 9 (1) ◽  
pp. 123-127
Author(s):  
Dharmendra Kumar ◽  
Sunil KumarYadav

The present study aims to derive modified geodesic equation in non-commutative space time. Snyder developed a model for non-commutative space time which provides a suitable technique of quantum structure of the space. We extend Tetrad formulation of general relativity to non-commutative case for complex gravity models. We derive geodesic equation on the k-space time in Non-commutative space, which is a generalization of Feynman’s approach. It has been shown that the homogeneous Maxwell’s equations may be derived by starting with the Newton’s force equation and generalized to relativistic. We show that the geodesic equation in the commutative space time is a suitable for generalization to κ -space time in κ -deformed space time. It shown that the κ-dependent correction to geodesic equation is cubic in velocities.


2010 ◽  
Vol 25 (14) ◽  
pp. 2883-2895 ◽  
Author(s):  
GAMAL G. L. NASHED

We calculate the total energy of an exact spherically symmetric solutions, i.e. Schwarzschild and Reissner–Nordström, using the gravitational energy–momentum 3-form within the tetrad formulation of general relativity. We explain how the effect of the inertial makes the total energy unphysical. Therefore, we use the covariant teleparallel approach which makes the energy always physical one. We also show that the inertial has no effect on the calculation of momentum.


Sign in / Sign up

Export Citation Format

Share Document