Surveying over 100 Predictors of Intrinsic Disorder in Proteins

Author(s):  
Bi Zhao ◽  
Lukasz Kurgan
Keyword(s):  
2021 ◽  
Vol 175 ◽  
pp. 156-170
Author(s):  
Denzelle Lee Lyngdoh ◽  
Niharika Nag ◽  
Vladimir N. Uversky ◽  
Timir Tripathi
Keyword(s):  

2015 ◽  
Vol 33 (11) ◽  
pp. 2469-2478 ◽  
Author(s):  
Lumbini R. Yadav ◽  
Sharad Rai ◽  
M.V. Hosur ◽  
Ashok K. Varma

2021 ◽  
Vol 22 (14) ◽  
pp. 7375
Author(s):  
Julie Ledoux ◽  
Alain Trouvé ◽  
Luba Tchertanov

The kinase insert domain (KID) of RTK KIT is the key recruitment region for downstream signalling proteins. KID, studied by molecular dynamics simulations as a cleaved polypeptide and as a native domain fused to KIT, showed intrinsic disorder represented by a set of heterogeneous conformations. The accurate atomistic models showed that the helical fold of KID is mainly sequence dependent. However, the reduced fold of the native KID suggests that its folding is allosterically controlled by the kinase domain. The tertiary structure of KID represents a compact array of highly variable α- and 310-helices linked by flexible loops playing a principal role in the conformational diversity. The helically folded KID retains a collapsed globule-like shape due to non-covalent interactions associated in a ternary hydrophobic core. The free energy landscapes constructed from first principles—the size, the measure of the average distance between the conformations, the amount of helices and the solvent-accessible surface area—describe the KID disorder through a collection of minima (wells), providing a direct evaluation of conformational ensembles. We found that the cleaved KID simulated with restricted N- and C-ends better reproduces the native KID than the isolated polypeptide. We suggest that a cyclic, generic KID would be best suited for future studies of KID f post-transduction effects.


2014 ◽  
Vol 169 ◽  
pp. 179-193 ◽  
Author(s):  
Julian Heinrich ◽  
Michael Krone ◽  
Seán I. O'Donoghue ◽  
Daniel Weiskopf

Intrinsically disordered regions (IDRs) in proteins are still not well understood, but are increasingly recognised as important in key biological functions, as well as in diseases. IDRs often confound experimental structure determination—however, they are present in many of the available 3D structures, where they exhibit a wide range of conformations, from ill-defined and highly flexible to well-defined upon binding to partner molecules, or upon post-translational modifications. Analysing such large conformational variations across ensembles of 3D structures can be complex and difficult; our goal in this paper is to improve this situation by augmenting traditional approaches (molecular graphics and principal components) with methods from human–computer interaction and information visualisation, especially parallel coordinates. We present a new tool integrating these approaches, and demonstrate how it can dissect ensembles to reveal functional insights into conformational variation and intrinsic disorder.


Sign in / Sign up

Export Citation Format

Share Document