Integrase Strand Transfer Inhibitors (INSTIs) Resistance Mutations in HIV-1 Infected Turkish Patients

2016 ◽  
Vol 17 (3) ◽  
pp. 109-113 ◽  
Author(s):  
M. Sayan ◽  
A. Gündüz ◽  
G. Ersöz ◽  
A. İnan ◽  
A. Deveci ◽  
...  
2020 ◽  
Vol 75 (12) ◽  
pp. 3517-3524
Author(s):  
M Casadellà ◽  
J R Santos ◽  
M Noguera-Julian ◽  
R Micán-Rivera ◽  
P Domingo ◽  
...  

Abstract Background Transmission of resistance mutations to integrase strand transfer inhibitors (INSTIs) in HIV-infected patients may compromise the efficacy of first-line antiretroviral regimens currently recommended worldwide. Continued surveillance of transmitted drug resistance (TDR) is thus warranted. Objectives We evaluated the rates and effects on virological outcomes of TDR in a 96 week prospective multicentre cohort study of ART-naive HIV-1-infected subjects initiating INSTI-based ART in Spain between April 2015 and December 2016. Methods Pre-ART plasma samples were genotyped for integrase, protease and reverse transcriptase resistance using Sanger population sequencing or MiSeq™ using a ≥ 20% mutant sensitivity cut-off. Those present at 1%–19% of the virus population were considered to be low-frequency variants. Results From a total of 214 available samples, 173 (80.8%), 210 (98.1%) and 214 (100.0%) were successfully amplified for integrase, reverse transcriptase and protease genes, respectively. Using a Sanger-like cut-off, the overall prevalence of any TDR, INSTI-, NRTI-, NNRTI- and protease inhibitor (PI)-associated mutations was 13.1%, 1.7%, 3.8%, 7.1% and 0.9%, respectively. Only three (1.7%) subjects had INSTI TDR (R263K, E138K and G163R), while minority variants with integrase TDR were detected in 9.6% of subjects. There were no virological failures during 96 weeks of follow-up in subjects harbouring TDR as majority variants. Conclusions Transmitted INSTI resistance remains rare in Spain and, to date, is not associated with virological failure to first-line INSTI-based regimens.


2016 ◽  
Vol 1 (1) ◽  
pp. 41 ◽  
Author(s):  
Said A. Hassounah ◽  
Thibault Mesplède ◽  
Mark A. Wainberg

Since the discovery of the first inhibitors of HIV replication, drug resistance has been a major problem in HIV therapy, due, in part, to the high mutation rate of HIV. Therefore, the development of a predictive animal model is important to identify impending resistance mutations and to possibly inform treatment decisions. Significant advances have been made possible through use of nonhuman primates infected by SIV, SHIV, and stHIV-1, and use of humanized mouse models of HIV-1 infections. In this review, we describe some of the findings from animal models used for the preclinical testing of integrase strand transfer inhibitors as well as other antiretroviral drugs. These models have led to important findings about the potential role of integrase strand transfer inhibitors in both the prevention and treatment of HIV-1 infection.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-33
Author(s):  
Ana Planinic ◽  
Maja Oroz ◽  
Josip Begovac ◽  
Snjezana Zidovec Lepej

Integrase strand transfer inhibitors (INSTIs) are the latest class of antiretroviral drugs that prevent the integration of proviral DNA into the host genome. The aim of this study was to describe, for the first time, INSTI resistance mutations observed in Croatian HIV-infected patients. Methods: The study was conducted between March 2016 and September 2018 and included 4 previously untreated patients (antiretroviral, ARV-naive) as well as 18 unsuccessfully treated HIV-infected patients (ARV-experienced) that have been tested for INSTI resistance. The genetic data on INSTI resistance was obtained by population-based sequencing of the integrase gene. Resistance analysis to other classes of antiretroviral drugs has been performed in some patients by sequencing the protease gene and a part of the reverse transcriptase HIV-1 gene. Results: INSTI resistance mutations were not found in ARV-naive patients. Mutations associated with resistance to INSTIs have been observed in 5 of 18 (27.8%) patients failing INSTI-based ARV regiment. Resistance to INSTIs in ARV-experienced patients was attributed to major resistance mutations Q148R, N155H and E92Q that confer resistance to two INSTIs (raltegravir and elvitegravir). Conclusions: The results of this study describe the first 5 cases of ARV-experienced HIV-1 infected patients with clinically significant resistance to INSTIs, and emphasize the need for continuous surveillance of INSTI resistance in patients experiencing virological failure to antiretroviral treatment in Croatia.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Francesco Saladini ◽  
Alessia Giannini ◽  
Adele Boccuto ◽  
Filippo Dragoni ◽  
Alice Appendino ◽  
...  

ABSTRACT Second-generation HIV-1 integrase strand transfer inhibitors (INSTIs) dolutegravir (DTG), bictegravir (BIC), and cabotegravir (CAB) showed a high genetic barrier to resistance and limited cross-resistance with first-generation INSTIs raltegravir (RAL) and elvitegravir (EVG). In this study, DTG, BIC, and CAB demonstrated a comparable activity on a panel of INSTI-resistant strains isolated from patients exposed to RAL, EVG, and/or DTG, with a significantly reduced susceptibility only with the pathway Q148H/K/R plus one to two additional INSTI mutations.


2014 ◽  
Vol 88 (17) ◽  
pp. 9683-9692 ◽  
Author(s):  
S. A. Hassounah ◽  
T. Mesplede ◽  
P. K. Quashie ◽  
M. Oliveira ◽  
P. A. Sandstrom ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Isabelle Malet ◽  
Frédéric Subra ◽  
Charlotte Charpentier ◽  
Gilles Collin ◽  
Diane Descamps ◽  
...  

ABSTRACT Resistance to the integrase strand transfer inhibitors raltegravir and elvitegravir is often due to well-identified mutations in the integrase gene. However, the situation is less clear for patients who fail dolutegravir treatment. Furthermore, most in vitro experiments to select resistance to dolutegravir have resulted in few mutations of the integrase gene. We performed an in vitro dolutegravir resistance selection experiment by using a breakthrough method. First, MT4 cells were infected with human immunodeficiency virus type 1 (HIV-1) Lai. After integration into the host cell genome, cells were washed to remove unbound virus and 500 nM dolutegravir was added to the cell medium. This high concentration of the drug was maintained throughout selection. At day 80, we detected a virus highly resistant to dolutegravir, raltegravir, and elvitegravir that remained susceptible to zidovudine. Sequencing of the virus showed no mutations in the integrase gene but highlighted the emergence of five mutations, all located in the nef region, of which four were clustered in the 3′ polypurine tract (PPT). Mutations selected in vitro by dolutegravir, located outside the integrase gene, can confer a high level of resistance to all integrase inhibitors. Thus, HIV-1 can use an alternative mechanism to develop resistance to integrase inhibitors by selecting mutations in the 3′ PPT region. Further studies are required to determine to what extent these mutations may explain virological failure during integrase inhibitor therapy. IMPORTANCE Integrase strand transfer inhibitors (INSTIs) are increasingly used both as first-line drugs and in rescue therapy because of their low toxicity and high efficacy in both treatment-naive and treatment-experienced patients. Until now, resistance mutations selected by INSTI exposure have either been described in patients or selected in vitro and involve the integrase gene. Most mutations selected by raltegravir, elvitegravir, or dolutegravir exposure are located inside the catalytic site of the integrase gene, but mutations outside the catalytic site of the integrase gene have also been selected with dolutegravir. Following in vitro selection with dolutegravir, we report, for the first time, a virus with selected mutations outside the HIV-1 integrase gene that confer resistance to all integrase inhibitors currently used to treat patients, such as raltegravir, elvitegravir, and dolutegravir. Our observation may explain why some viruses responsible for virological failure in patients treated with dolutegravir did not show mutations in the integrase gene. IMPORTANCE Integrase strand transfer inhibitors (INSTIs) are increasingly used both as first-line drugs and in rescue therapy because of their low toxicity and high efficacy in both treatment-naive and treatment-experienced patients. Until now, resistance mutations selected by INSTI exposure have either been described in patients or selected in vitro and involve the integrase gene. Most mutations selected by raltegravir, elvitegravir, or dolutegravir exposure are located inside the catalytic site of the integrase gene, but mutations outside the catalytic site of the integrase gene have also been selected with dolutegravir. Following in vitro selection with dolutegravir, we report, for the first time, a virus with selected mutations outside the HIV-1 integrase gene that confer resistance to all integrase inhibitors currently used to treat patients, such as raltegravir, elvitegravir, and dolutegravir. Our observation may explain why some viruses responsible for virological failure in patients treated with dolutegravir did not show mutations in the integrase gene.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Prats ◽  
Ignacio Martínez-Zalacaín ◽  
Beatriz Mothe ◽  
Eugènia Negredo ◽  
Núria Pérez-Álvarez ◽  
...  

AbstractIntegrase strand transfer inhibitors (INSTI) are a main component of the current antiretroviral regimens recommended for treatment of HIV infection. However, little is known about the impact of INSTI on neurocognition and neuroimaging. We developed a prospective observational trial to evaluate the effects of INSTI-based antiretroviral therapy on comprehensive brain outcomes (cognitive, functional, and imaging) according to the time since HIV-1 acquisition. We recruited men living with HIV who initiated antiretroviral therapy with INSTI < 3 months since the estimated date of HIV-1 acquisition (n = 12) and > 6 months since estimated date of HIV-1 acquisition (n = 15). We also recruited a group of matched seronegative individuals (n = 15). Assessments were performed at baseline (before initiation of therapy in HIV arms) and at weeks 4 and 48. Baseline cognitive functioning was comparable between the arms. At week 48, we did not find cognitive differences between starting therapy with INSTI earlier than 3 months or later than 6 months after acquisition of HIV-1 infection. Functional status was poorer in individuals diagnosed earlier. This effect recovered 48 weeks after initiation of therapy. Regarding brain imaging, we found that men living with HIV initiating antiretroviral therapy later experienced a greater decrease in medial orbitofrontal cortex over time, with expected negative repercussions for decision-making tasks.


Author(s):  
Emmanuel Ndashimye ◽  
Yue Li ◽  
Paul S Reyes ◽  
Mariano Avino ◽  
Abayomi S Olabode ◽  
...  

Abstract Objectives The second-generation integrase strand transfer inhibitor (INSTI) bictegravir is becoming accessible in low- and middle-income countries (LMICs), and another INSTI, cabotegravir, has recently been approved as a long-acting injectable. Data on bictegravir and cabotegravir susceptibility in raltegravir-experienced HIV-1 subtype A- and D-infected patients carrying drug resistance mutations (DRMs) remain very scarce in LMICs. Patients and methods HIV-1 integrase (IN)-recombinant viruses from eight patients failing raltegravir-based third-line therapy in Uganda were genotypically and phenotypically tested for susceptibility to bictegravir and cabotegravir. Ability of these viruses to integrate into human genomes was assessed in MT-4 cells. Results HIV-1 IN-recombinant viruses harbouring single primary mutations (N155H or Y143R/S) or in combination with secondary INSTI mutations (T97A, M50I, L74IM, E157Q, G163R or V151I) were susceptible to both bictegravir and cabotegravir. However, combinations of primary INSTI-resistance mutations such as E138A/G140A/G163R/Q148R or E138K/G140A/S147G/Q148K led to decreased susceptibility to both cabotegravir (fold change in EC50 values from 429 to 1000×) and bictegravir (60 to 100×), exhibiting a high degree of cross-resistance. However, these same IN-recombinant viruses showed impaired integration capacity (14% to 48%) relative to the WT HIV-1 NL4-3 strain in the absence of drug. Conclusions Though not currently widely accessible in most LMICs, bictegravir and cabotegravir offer a valid alternative to HIV-infected individuals harbouring subtype A and D HIV-1 variants with reduced susceptibility to first-generation INSTIs but previous exposure to raltegravir may reduce efficacy, more so with cabotegravir.


2020 ◽  
Vol 56 (1) ◽  
pp. 106027
Author(s):  
Maria M. Santoro ◽  
Chiara Fornabaio ◽  
Marina Malena ◽  
Laura Galli ◽  
Andrea Poli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document