Primary resistance to integrase strand transfer inhibitors in Spain using ultrasensitive HIV-1 genotyping

2020 ◽  
Vol 75 (12) ◽  
pp. 3517-3524
Author(s):  
M Casadellà ◽  
J R Santos ◽  
M Noguera-Julian ◽  
R Micán-Rivera ◽  
P Domingo ◽  
...  

Abstract Background Transmission of resistance mutations to integrase strand transfer inhibitors (INSTIs) in HIV-infected patients may compromise the efficacy of first-line antiretroviral regimens currently recommended worldwide. Continued surveillance of transmitted drug resistance (TDR) is thus warranted. Objectives We evaluated the rates and effects on virological outcomes of TDR in a 96 week prospective multicentre cohort study of ART-naive HIV-1-infected subjects initiating INSTI-based ART in Spain between April 2015 and December 2016. Methods Pre-ART plasma samples were genotyped for integrase, protease and reverse transcriptase resistance using Sanger population sequencing or MiSeq™ using a ≥ 20% mutant sensitivity cut-off. Those present at 1%–19% of the virus population were considered to be low-frequency variants. Results From a total of 214 available samples, 173 (80.8%), 210 (98.1%) and 214 (100.0%) were successfully amplified for integrase, reverse transcriptase and protease genes, respectively. Using a Sanger-like cut-off, the overall prevalence of any TDR, INSTI-, NRTI-, NNRTI- and protease inhibitor (PI)-associated mutations was 13.1%, 1.7%, 3.8%, 7.1% and 0.9%, respectively. Only three (1.7%) subjects had INSTI TDR (R263K, E138K and G163R), while minority variants with integrase TDR were detected in 9.6% of subjects. There were no virological failures during 96 weeks of follow-up in subjects harbouring TDR as majority variants. Conclusions Transmitted INSTI resistance remains rare in Spain and, to date, is not associated with virological failure to first-line INSTI-based regimens.

2021 ◽  
Vol 19 ◽  
Author(s):  
Rabia Can Sarinoglu ◽  
Uluhan Sili ◽  
Ufuk Hasdemir ◽  
Burak Aksu ◽  
Guner Soyletir ◽  
...  

Background: The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. Objective: Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. Methods: All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. Results: NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates.. Conclusion: The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.


2016 ◽  
Vol 17 (3) ◽  
pp. 109-113 ◽  
Author(s):  
M. Sayan ◽  
A. Gündüz ◽  
G. Ersöz ◽  
A. İnan ◽  
A. Deveci ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Tali Wagner ◽  
Karen Olshtain-Pops ◽  
Marina Wax ◽  
Olivia Horwitz ◽  
Rachel Shirazi ◽  
...  

Abstract Introduction Although women comprise 33% of the HIV-1-carriers in Israel, they have not previously been considered a risk group requiring special attention. Immigration waves from countries in Africa and in East Europe may have changed the local landscape of women diagnosed with HIV-1. Here, we aimed to assess viral and demographic characteristics of HIV-1-positive women identified in Israel between 2010 and 2018. Methods All > 16 year-old, HIV-1-infected women, diagnosed in Israel in 2010–2018, (n = 763) registered in the National HIV reference laboratory were included in this cross-sectional study. Demographic and clinical characteristics were extracted from the database. Viral subtypes and transmitted drug resistance mutations (TDRM) were determined in 337 (44.2%) randomly selected samples collected from treatment-naive women. Results Median age at diagnosis was 38 years. Most (73.3%) women were immigrants from the former Soviet Union (FSU) (41.2%, 314) or sub-Saharan Africa (SSA) (32.2%, 246) and carried subtype A (79.7%) or C (90.3%), respectively. Only 11.4% (87) were Israeli-born women. Over the years, the prevalence of women from SSA decreased while that of women from FSU increased significantly (p < 0.001). The median CD4+ cell count was 263 cells/mm3, and higher (391 cells/mm3) in Israeli-born women. TDRM were identified in 10.4% of the tested samples; 1.8, 3 and 7.1% had protease inhibitors (PI), nucleotide reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) TDRM, respectively. The prevalence of women with NNRTI TDRM significantly increased from 4.9% in 2010–2012 to 13.3% in 2016–2018. Israeli-born women had the highest prevalence (16.3%) of NNRTI TDRM (p = 0.014). NRTI A62 (5.6%), NNRTI E138 and K103 (5.6 and 4.2%, respectively) were the most prominent mutated sites. Conclusions Most HIV-1-positive women diagnosed in Israel in 2010–2018 were immigrants, with the relative ratio of FSU immigrants increasing in recent years. The high proportion of women diagnosed with resistance mutations, particularly, the yearly increase in the frequency of NNRTI mutations, support the national policy of resistance testing at baseline.


2016 ◽  
Vol 1 (1) ◽  
pp. 41 ◽  
Author(s):  
Said A. Hassounah ◽  
Thibault Mesplède ◽  
Mark A. Wainberg

Since the discovery of the first inhibitors of HIV replication, drug resistance has been a major problem in HIV therapy, due, in part, to the high mutation rate of HIV. Therefore, the development of a predictive animal model is important to identify impending resistance mutations and to possibly inform treatment decisions. Significant advances have been made possible through use of nonhuman primates infected by SIV, SHIV, and stHIV-1, and use of humanized mouse models of HIV-1 infections. In this review, we describe some of the findings from animal models used for the preclinical testing of integrase strand transfer inhibitors as well as other antiretroviral drugs. These models have led to important findings about the potential role of integrase strand transfer inhibitors in both the prevention and treatment of HIV-1 infection.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-33
Author(s):  
Ana Planinic ◽  
Maja Oroz ◽  
Josip Begovac ◽  
Snjezana Zidovec Lepej

Integrase strand transfer inhibitors (INSTIs) are the latest class of antiretroviral drugs that prevent the integration of proviral DNA into the host genome. The aim of this study was to describe, for the first time, INSTI resistance mutations observed in Croatian HIV-infected patients. Methods: The study was conducted between March 2016 and September 2018 and included 4 previously untreated patients (antiretroviral, ARV-naive) as well as 18 unsuccessfully treated HIV-infected patients (ARV-experienced) that have been tested for INSTI resistance. The genetic data on INSTI resistance was obtained by population-based sequencing of the integrase gene. Resistance analysis to other classes of antiretroviral drugs has been performed in some patients by sequencing the protease gene and a part of the reverse transcriptase HIV-1 gene. Results: INSTI resistance mutations were not found in ARV-naive patients. Mutations associated with resistance to INSTIs have been observed in 5 of 18 (27.8%) patients failing INSTI-based ARV regiment. Resistance to INSTIs in ARV-experienced patients was attributed to major resistance mutations Q148R, N155H and E92Q that confer resistance to two INSTIs (raltegravir and elvitegravir). Conclusions: The results of this study describe the first 5 cases of ARV-experienced HIV-1 infected patients with clinically significant resistance to INSTIs, and emphasize the need for continuous surveillance of INSTI resistance in patients experiencing virological failure to antiretroviral treatment in Croatia.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2501
Author(s):  
Steven J. Smith ◽  
Andrea Ferris ◽  
Xuezhi Zhao ◽  
Gary Pauly ◽  
Joel P. Schneider ◽  
...  

Integrase strand transfer inhibitors (INSTIs) are a class of antiretroviral compounds that prevent the insertion of a DNA copy of the viral genome into the host genome by targeting the viral enzyme integrase (IN). Dolutegravir (DTG) is a leading INSTI that is given, usually in combination with nucleoside reverse transcriptase inhibitors (NRTIs), to treat HIV-1 infections. The emergence of resistance to DTG and other leading INSTIs is rare. However, there are recent reports suggesting that drug resistance mutations can occur at positions outside the integrase gene either in the HIV-1 polypurine tract (PPT) or in the envelope gene (env). Here, we used single round infectivity assays to measure the antiviral potencies of several FDA-approved INSTIs and non-nucleoside reverse transcriptase inhibitors (NNRTIs) against a panel of HIV-1 PPT mutants. We also tested several of our promising INSTIs and NNRTIs in these assays. No measurable loss in potency was observed for either INSTIs or NNRTIs against the HIV-1 PPT mutants. This suggests that HIV-1 PPT mutants are not able, by themselves, to confer resistance to INSTIs or NNRTIs.


2019 ◽  
Vol 11 (2) ◽  
pp. 75-83 ◽  
Author(s):  
A. A. Kirichenko ◽  
D. E. Kireev ◽  
A. E. Lopatukhin ◽  
A. V. Murzakova ◽  
I. A. Lapovok ◽  
...  

Aim: to analyze the prevalence, structure of drug resistance and drug resistance mutations in the protease and reverse transcriptase genes of HIV-1 among treatment naïve patients.Materials and methods. We analyzed protease and reverse transcriptase sequences from 1560 treatment naïve HIV-infected patients from all Federal Districts of the Russian Federation with the first positive immune blot during 1998–2017. Sequences were analyzed for the presence of drug resistance mutations and predicted drug resistance to antiretroviral drugs using two algorithms — Stanford HIVDR Database (HIVdb) and the 2009 SDRM list (CPR).Results. The prevalence of drug resistance mutations was 11,1%. More often the prevalence of drug resistance was found for non-nucleoside reverse transcriptase inhibitor drugs (rilpivirine, nevirapine, efavirenz). The prevalence of transmitted drug resistance associated with mutations from the SDRM list was 5,3%, which is classified by the WHO as a moderate level. However, it should be noted that since the large-scale use of antiretroviral drugs in the Russian Federation, there has been a trend towards a gradual increase in the level of the transmitted drug resistance, and in 2016 it has already reached 6,1%.Conclusion. The results demonstrate the need for regular surveillance of the prevalence of HIV drug resistance to antiretroviral drugs among treatment naïve patients in the Russian Federation.


2011 ◽  
Vol 55 (7) ◽  
pp. 3187-3194 ◽  
Author(s):  
S. Reigadas ◽  
B. Masquelier ◽  
C. Calmels ◽  
M. Laguerre ◽  
E. Lazaro ◽  
...  

ABSTRACTThe HIV-1 integrase (IN) mutations Y143C/R are known as raltegravir (RAL) primary resistance mutations. In a previous study (S. Reigadas et al., PLoS One 5:e10311, 2010), we investigated the genetic pathway and the dynamics of emergence of the Y143C/R mutations in three patients failing RAL-containing regimens. In these patients, the Y143C/R mutation was associated with the T97A mutation. The aim of the present biochemical and molecular studiesin vitrowas to evaluate whether the secondary mutation, T97A, associated with the Y143C/R mutation could increase the level of resistance to RAL and impact IN activities. Site-directed mutagenesis experiments were performed with expression vectors harboring the region of thepolgene coding for IN. With a 3′-end processing assay, the 50% inhibitory concentrations (IC50) were 1.2 μM, 1.2 μM, 2.4 μM (fold change [FC], 2), and 20 μM (FC, 16.7) for IN wild type (WT), the IN T97A mutation, the IN Y143C/T97A mutation, and the IN Y143R/T97A mutation, respectively. FCs of 18 and 100 were observed with the strand transfer assay for IN Y143C/T97A and Y143R/T97A mutations, with IC50of 0.625 μM and 2.5 μM, respectively. In the strand transfer assay, the IN Y143C or R mutation combined with the secondary mutation T97A severely impaired susceptibility to RAL compared to results with the IN Y143C or R mutation alone. Assays without RAL suggested that the T97A mutation could rescue the catalytic activity which was impaired by the presence of the Y143C/R mutation. The combination of the T97A mutation with the primary RAL resistance mutations Y143C/R strongly reduces the susceptibility to RAL and rescues the catalytic defect due to the Y143C/R mutation. This result indicates that the emergence of the Y143C/R/T97A double-mutation pattern in patients is a signature of a high resistance level.


Sign in / Sign up

Export Citation Format

Share Document