Light chain 3 immunoexpression in psoriasis

Author(s):  
Rehab M. Samaka ◽  
Alaa Marae ◽  
Manar Faried ◽  
Heba A.S. Bazid
Keyword(s):  
2006 ◽  
Vol 175 (4S) ◽  
pp. 53-53
Author(s):  
Andy Y. Chang ◽  
Stephen A. Zderic ◽  
Douglas A. Canning ◽  
Samuel Chacko

1993 ◽  
Vol 70 (02) ◽  
pp. 273-280 ◽  
Author(s):  
Janos Kappelmayer ◽  
Satya P Kunapuli ◽  
Edward G Wyshock ◽  
Robert W Colman

SummaryWe demonstrate that in addition to possessing binding sites for intact factor V (FV), unstimulated peripheral blood monocytes also express activated factor V (FVa) on their surfaces. FVa was identified on the monocyte surface by monoclonal antibody B38 recognizing FVa light chain and by human oligoclonal antibodies H1 (to FVa light chain) and H2 (to FVa heavy chain) using immunofluorescence microscopy and flow cytometry. On Western blots, partially cleaved FV could be identified as a 220 kDa band in lysates of monocytes. In addition to surface expression of FVa, monocytes also contain intracellular FV as detected only after permeabilization by Triton X-100 by monoclonal antibody B10 directed specifically to the Cl domain not present in FVa. We sought to determine whether the presence of FV in peripheral blood monocytes is a result of de novo synthesis.Using in situ hybridization, no FV mRNA could be detected in monocytes, while in parallel control studies, factor V mRNA was detectable in Hep G2 cells and CD18 mRNA in monocytes. In addition, using reverse transcriptase and the polymerase chain reaction, no FV mRNA was detected in mononuclear cells or in U937 cells, but mRNA for factor V was present in Hep G2 cells using the same techniques. These data suggest that FV is present in human monocytes, presumably acquired by binding of plasma FV, and that the presence of this critical coagulation factor is not due to de novo synthesis.


1983 ◽  
Vol 49 (01) ◽  
pp. 024-027 ◽  
Author(s):  
David Vetterlein ◽  
Gary J Calton

SummaryThe preparation of a monoclonal antibody (MAB) against high molecular weight (HMW) urokinase light chain (20,000 Mr) is described. This MAB was immobilized and the resulting immunosorbent was used to isolate urokinase starting with an impure commercial preparation, fresh urine, spent tissue culture media, or E. coli broth without preliminary dialysis or concentration steps. Monospecific antibodies appear to provide a rapid single step method of purifying urokinase, in high yield, from a variety of biological fluids.


2016 ◽  
Vol 25 (1) ◽  
pp. 99-103 ◽  
Author(s):  
Benoit Brilland ◽  
Johnny Sayegh ◽  
Anne Croue ◽  
Frank Bridoux ◽  
Jean-François Subra ◽  
...  

Light chain deposition disease (LCDD) is a rare multisystemic disorder associated with plasma cell proliferation. It mainly affects the kidney, but liver and heart involvement may occur, sometimes mimicking the picture of systemic amyloidosis. Liver disease in LCDD is usually asymptomatic and exceptionally manifests with severe cholestatic hepatitis. We report the case of a 66-year-old female with κ-LCDD and cast nephropathy in the setting of symptomatic multiple myeloma who, after a first cycle of bortezomib-dexamethasone chemotherapy, developed severe and rapidly worsening intrahepatic cholestasis secondary to liver κ-light chain deposition. Intrahepatic cholestasis was attributed to LCDD on the basis of the liver histology and exclusion of possible diagnoses. Chemotherapy was maintained and resulted in progressive resolution of cholestasis. We report here an uncommon presentation of LCDD, with prominent liver involvement that fully recovered with bortezomib-based chemotherapy, and briefly review the relevant literature. Abbreviations: AKI: Acute kidney injury; ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST: aspartate aminotransferase; CMV: Cytomegalovirus; EBV: Epstein–Barr virus; GGT: gamma-glutamyl transferase; HSV: Herpes simplex virus; LC: light chain; LCDD: Light chain deposition disease; MIDD: Monoclonal immunoglobulin deposition disease; MM: Multiple myeloma.


Sign in / Sign up

Export Citation Format

Share Document