Effects of agriculture, climate, and policy on NDVI change in a semi-arid river basin of the Chinese Loess Plateau

2019 ◽  
Vol 33 (3) ◽  
pp. 321-338 ◽  
Author(s):  
Kai Zheng ◽  
Jian-Sheng Ye ◽  
Bao-Cheng Jin ◽  
Fen Zhang ◽  
Jian-Zhou Wei ◽  
...  
2020 ◽  
Vol 45 (8) ◽  
pp. 1777-1788
Author(s):  
Lishan Ran ◽  
Xiankun Yang ◽  
Mingyang Tian ◽  
Hongyan Shi ◽  
Shaoda Liu ◽  
...  

2021 ◽  
Vol 125 ◽  
pp. 126-134
Author(s):  
Kaibo Wang ◽  
Lei Deng ◽  
Zhouping Shangguan ◽  
Yiping Chen ◽  
Xin Lin

2014 ◽  
Vol 11 (6) ◽  
pp. 10015-10043 ◽  
Author(s):  
H. Wang ◽  
W. Liu ◽  
C. L. Zhang

Abstract. Branched glycerol dialkyl glycerol tetraethers (bGDGTs) have been show promising for continental paleotemperature studies in loess-paleosol sequences (LPSs). Thus far, however, little is known about the effect of soil moisture on their distributions on the Chinese Loess Plateau (CLP). In this study, the relationships between environmental variables and the cyclization of bGDGTs (the so called CBT index) were investigated in a comprehensive set of surface soils in the CLP and its adjacent arid/semi-arid areas. We find that CBT correlates best with soil water content (SWC) or mean annual precipitation (MAP) for the total sample set. Particularly for the CLP soils, there is a significant positive relationship between CBT and MAP (CBT = −0.0021 · MAP + 1.7, n = 37, R2 = 0.87; MAP range: 210–680 mm). This indicates that CBT is mainly controlled by soil moisture in the alkalescent soils (pH > 7) in arid/semi-arid regions, where it is not sensitive to soil pH. Therefore, we suggest that CBT can potentially be used as a palaeorainfall proxy on the CLP. According to the preliminary CBT–MAP relationship for modern CLP soils, palaeorainfall history was reconstructed from three LPSs (Yuanbao, Lantian, and Mangshan) with published bGDGT data spanning the past 70 ka. The CBT-derived MAP records of the three sites consistently show precession-driven variations resembling the speleothem δ18O monsoon record, and are also in general accord with the fluctuations of the respective magnetic susceptibility (MS) record, supporting CBT as a reasonable proxy for palaeorainfall reconstruction in LPS studies. Moreover, the comparison of CBT-derived MAP and bGDGT-derived temperature may enable us to further assess the relative timing and magnitude of hydrological and thermal changes on the CLP, independent of chronology.


2021 ◽  
Author(s):  
Yanni Song ◽  
Yiping Wu ◽  
Changshun Sun ◽  
Fubo Zhao ◽  
Jingyi Hu ◽  
...  

Abstract Water quality is the restrictive factor for both ecosystem health and social development in the Chinese Loess Plateau, a unique area with most severe soil erosion, fragile ecology, and water shortage. Understanding the characteristics of the pollutant loads is of vital importance for the sustainability of eco-environment in the Loess Plateau. This study investigated the spatiotemporal changes of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) loads by combining the Soil and Water Assessment Tool (SWAT) and regression model Load Estimator (LOADEST) in a typical loess hilly and gully watershed—the Yan River Basin (YanRB). Results showed that the model simulations of monthly streamflow and pollutant loads were in good agreement with those derived from the in-situ observations. The temporal variation analysis suggested that the pollutant loads were generally rising in the study period (2001–2018) at four of the five stations and reached the maximum in 2014, and the multi-year (i.e., 2001–2018 with 2013 being excluded due to extreme rainfall) average loads of COD, TN, and TP at the Tanjiahe station, which is close to the outlet of the basin, were 15,021 kg/d, 3,835 kg/d, and 168 kg/d, respectively. The spatial distribution of the TN and TP loads along the river seemed to be quite unique because the TP level were obviously higher at the midstream (e.g., Zhujiagou and Ganguyi) than the downstream (e.g., Tanjiahe), and the TN level decreased when the river flowed from Zhujiagou to Ganguyi. Further, the seasonal analysis indicated that the nutrient loads were the highest in summer, followed by autumn, and the loads in these two wet seasons contributed the most of the annual pollution loads—about 76% and 84% for TN and TP, respectively, indicating the higher flow, the higher pollution load, a similar point based on the inter-annual analysis. In addition, the contribution analysis of point source and non-point source pollutions demonstrated that NPS led to most of the pollutant loads at the whole watershed—87%, 85%, and 84% of the COD, TN, and TP loads, respectively. Overall, this study provided spatiotemporal distributions of the key pollutant loads in the YanRB and can be valuable for water quality protection and pollution control in this area.


Sign in / Sign up

Export Citation Format

Share Document