scholarly journals Dependence of the cyclization of branched tetraethers (CBT) on soil moisture in the Chinese Loess Plateau and the adjacent areas: implications for palaeorainfall reconstructions

2014 ◽  
Vol 11 (6) ◽  
pp. 10015-10043 ◽  
Author(s):  
H. Wang ◽  
W. Liu ◽  
C. L. Zhang

Abstract. Branched glycerol dialkyl glycerol tetraethers (bGDGTs) have been show promising for continental paleotemperature studies in loess-paleosol sequences (LPSs). Thus far, however, little is known about the effect of soil moisture on their distributions on the Chinese Loess Plateau (CLP). In this study, the relationships between environmental variables and the cyclization of bGDGTs (the so called CBT index) were investigated in a comprehensive set of surface soils in the CLP and its adjacent arid/semi-arid areas. We find that CBT correlates best with soil water content (SWC) or mean annual precipitation (MAP) for the total sample set. Particularly for the CLP soils, there is a significant positive relationship between CBT and MAP (CBT = −0.0021 · MAP + 1.7, n = 37, R2 = 0.87; MAP range: 210–680 mm). This indicates that CBT is mainly controlled by soil moisture in the alkalescent soils (pH > 7) in arid/semi-arid regions, where it is not sensitive to soil pH. Therefore, we suggest that CBT can potentially be used as a palaeorainfall proxy on the CLP. According to the preliminary CBT–MAP relationship for modern CLP soils, palaeorainfall history was reconstructed from three LPSs (Yuanbao, Lantian, and Mangshan) with published bGDGT data spanning the past 70 ka. The CBT-derived MAP records of the three sites consistently show precession-driven variations resembling the speleothem δ18O monsoon record, and are also in general accord with the fluctuations of the respective magnetic susceptibility (MS) record, supporting CBT as a reasonable proxy for palaeorainfall reconstruction in LPS studies. Moreover, the comparison of CBT-derived MAP and bGDGT-derived temperature may enable us to further assess the relative timing and magnitude of hydrological and thermal changes on the CLP, independent of chronology.

2014 ◽  
Vol 11 (23) ◽  
pp. 6755-6768 ◽  
Author(s):  
H. Wang ◽  
W. Liu ◽  
C. L. Zhang

Abstract. The use of branched glycerol dialkyl glycerol tetraethers (bGDGTs) in loess–palaeosol sequences (LPSs) has shown promises in continental palaeotemperature reconstructions. Thus far, however, little is known about the effect of soil moisture on their distributions in the water-limited Chinese Loess Plateau (CLP). In this study, the relationships between environmental variables and the cyclization of branched tetraethers (CBT) were investigated in arid–subhumid China using 97 surface soils in the CLP and its vicinity, as well as 78 soils with pH > 7 which have been previously published. We find that CBT correlates best with soil water content (SWC) or mean annual precipitation (MAP) for the overall data set. This indicates that CBT is mainly controlled by soil moisture instead of soil pH in alkaline soils from arid–subhumid regions, where water availability is a limiting factor for the producers of bGDGTs. Therefore, we suggest that CBT can potentially be used as a palaeorainfall proxy on the alkaline CLP. According to the preliminary CBT–MAP relationship for modern CLP soils (CBT = −0.0021 × MAP + 1.7, n = 37, r = −0.93), palaeorainfall history was reconstructed from three LPSs (Yuanbao, Lantian, and Mangshan) with published bGDGT data spanning the past 70 ka. The CBT-derived MAP records of the three sites consistently show precession-driven variation resembling the monsoon record based on speleothem δ18O, supporting CBT as a reasonable proxy for palaeorainfall reconstruction in LPS. The direct application of CBT as a palaeorainfall proxy in corroboration with the bGDGT-based temperature proxy may enable us to further assess the temperature/hydrological association for palaeoclimate studies on the CLP.


2017 ◽  
Vol 49 (4) ◽  
pp. 1255-1270 ◽  
Author(s):  
Bowei Yu ◽  
Gaohuan Liu ◽  
Qingsheng Liu ◽  
Jiuliang Feng ◽  
Xiaoping Wang ◽  
...  

Abstract Large gullies occur globally and can be classified into four main micro-topographic types: ridges, plane surfaces, pipes and cliffs. Afforestation is an effective method of controlling land degradation worldwide. However, the combined effects of afforestation and micro-topography on the variability of soil moisture remain poorly understood. The primary objectives of this study were to determine whether afforestation affects the spatial pattern of the root-zone (0–100 cm) soil moisture and whether soil moisture dynamics differ among the micro-topographic types in gully areas of the Chinese Loess Plateau. The results showed that in the woodland regions, the spatial mean moisture values decreased by an average of 6.2% and the spatial variability increased, as indicated by the standard deviation (17.1%) and the coefficient of variation (22.2%). In general, different micro-topographic types exerted different influences on soil moisture behavior. The plane surface presented the largest average soil moisture values and the smallest spatial variability. The lowest soil moisture values were observed in the ridge, mainly due to the rapid drainage of these areas. Although pipe woodland region can concentrate surface runoff during and after rainfall, the larger trees growing in these areas can lead to increased soil moisture evapotranspiration.


2018 ◽  
Vol 32 (12) ◽  
pp. 1738-1754 ◽  
Author(s):  
Zhao Jin ◽  
Li Guo ◽  
Henry Lin ◽  
Yunqiang Wang ◽  
Yunlong Yu ◽  
...  

2020 ◽  
Vol 45 (8) ◽  
pp. 1777-1788
Author(s):  
Lishan Ran ◽  
Xiankun Yang ◽  
Mingyang Tian ◽  
Hongyan Shi ◽  
Shaoda Liu ◽  
...  

2021 ◽  
Vol 125 ◽  
pp. 126-134
Author(s):  
Kaibo Wang ◽  
Lei Deng ◽  
Zhouping Shangguan ◽  
Yiping Chen ◽  
Xin Lin

Sign in / Sign up

Export Citation Format

Share Document