Effects of plastic film mulching on soil water use efficiency and wheat yield in the Loess Plateau of China

2020 ◽  
Vol 34 (4) ◽  
pp. 405-418
Author(s):  
Yajun Yang ◽  
Wei Du ◽  
Ziying Cui ◽  
Shuang Lei ◽  
Tong Lei ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wen Lin ◽  
Wenzhao Liu ◽  
Qingwu Xue

Abstract To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage.


2012 ◽  
Vol 622-623 ◽  
pp. 1725-1729
Author(s):  
Jian Guo Shi ◽  
Jing Hui Liu ◽  
Li Xin Jia ◽  
Bao Ping Zhao ◽  
Li Jun Li ◽  
...  

Aiming at reducing agricultural pollution caused by plastic film and increasing soil moisture and water use efficiency (WUE), the field experiments were conducted to investigate the effects of re-used plastic film mulching on soil moisture, sunflower’s yield and water use efficiency by compared with new plastic film mulching and bare field in Hetao area, China. The results showed that, soil water of re-used film mulching increased at different degree. Compared with bare field and new film mulching, soi1 moisture of re-used film were higher significantly 1.5 percentage points in 0-100 cm, and especially 1.9 or 2.6 percentage points in 0-10 cm during sunflower’s growth stage. Soil water of re-used film was more than that of bare field 24.8 mm (in 2010) and 33.0 mm (in 2011) before seeding, and 21.6mm (in 2010) and 24.5mm (in 2011) at harvest when soil water was replenished to same level for each treatment before sowing. Meanwhile, the grain yield of re-used film was higher significantly than that of bare field 11.4% (in 2010) and 16.8% (in 2011), and WUE of re-used film was higher significantly 15.7% (in 2010) and 22.7% (in 2011) respectively, no significant with new film. So it was worth to apply re-used film to agriculture production for improving the soil moisture, enhancing water use efficiency and increasing the yield of sunflower. We suggest that the application of re-used film mulching is a suitable soil management practice for increase water and WUE in Hetao area or other areas with similar conditions.


2020 ◽  
Author(s):  
Shenglin Wang ◽  
Chen Luo ◽  
Yue Xie ◽  
Xiaotang Jiang ◽  
Yixin Wang ◽  
...  

Abstract Background: Traditional irrigation methods in protected vegetable production such as furrow irrigation result in low water use efficiency. New techniques, such as drip irrigation, micro-sprinkling irrigation have been developed for improving water use efficiency. However, these techniques have not been tested in greenhouse celery production. In this study, three different irrigation techniques micro-sprinkler irrigation (MS), furrow irrigation under plastic film mulching (PF) and micro-sprinkler irrigation under the plastic film mulching (MSP) were investigated whether the three techniques can improve the yield, quality and water use efficiency of greenhouse-grown celery, compared to furrow irrigation (FI). Results: The individual plant weight of celery was higher under MS, PF and MSP than under FI in both autumn season crop (AC) and spring season crop (SC), compared to FI. In AC and SC, the economic yield of celery increases under MSP by 54.18% and 49.55%, the economic yield of celery increases under PF by 30.37% and 34.10%. The irrigation amount of MSP was 151.69 and 179.91 m3 667 m-2 in AC and SC, which was 23.13% and 27.27% lower than that of FI. The irrigation amount of PF was 151.69 and 196.78 m3 667 m-2 in AC and SC, which was 23.13% and 20.45% lower than that of FI. PF and MSP reduced the irrigation amount of celery cultivation in greenhouse, and soil evaporation content. Conclusions: In short, MSP and PF promoted the growth and yield of celery in greenhouse with improved quality and water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document