Optimal Design and Analysis of the Novel Low Cogging Torque Axial Flux-Switching Permanent-Magnet Motor

2018 ◽  
Vol 46 (11-12) ◽  
pp. 1330-1339
Author(s):  
Javad Rahmani Fard ◽  
Mohammad Ardebili
2013 ◽  
Vol 49 (5) ◽  
pp. 2189-2192 ◽  
Author(s):  
Dong-Kyun Woo ◽  
Il-Woo Kim ◽  
Dong-Kuk Lim ◽  
Jong-Suk Ro ◽  
Hyun-Kyo Jung

Author(s):  
Javad Rahmani Fard ◽  
Mohammad Ardebili

Purpose The purpose of this paper is to suggest a novel current sensor-less drive system for a novel axial flux-switching permanent-magnet motor drive to reduce the costs and avoid problems caused by faults of the current sensors. Design/methodology/approach Commonly, a conventional controller needs at least two current sensors; in this paper, the current sensors are removed by replacing estimated stator current with the extended Kalman filter. Findings A prototype of the novel axial flux-switching permanent-magnet motor is fabricated and tested. It is found that the experimental results confirm the proposed method and show that the control has almost the same performance and ability as the conventional control. Originality/value The axial flux-switching permanent-magnet motor is one of the most efficient motors, but current sensor-less control of an axial flux-switching permanent-magnet motor with a sandwiched permanent magnet and a unity displacement winding factor has not been specially reported to date. Thus, in this paper, the authors report on current sensor-less control based on the extended Kalman filter for electric vehicles.


Author(s):  
Lidija Petkovska ◽  
Goga Cvetkovski ◽  
Paul Lefley

Purpose – The purpose of this paper is to investigate the impact of the stator core design for a surface permanent magnet motor (SPMM) on the cogging torque profile. The objective is to show how the cogging torque of this type of motor can be significantly reduced by implementing an original compound technique by skewing stator slots and inserting wedges in the slot openings. Design/methodology/approach – At the beginning generic model of a SPMM is studied. By using FEA, for this idealised assembly, characteristics of cogging and electromagnetic torque are simulated and determined for one period of their change. Afterwards, actual stator design of the original SPMM is described. It is thoroughly investigated and the torque characteristics are compared with the generic ones. While the static torque is slightly decreased, the peak cogging torque is almost doubled and the curve exhibits an uneven profile. The first method for cogging torque reduction is skewing the stator stack. The second technique is to insert wedges of SMC in the slot openings. By using 2D and 2 1/2D numerical experiment cogging curves are calculated and compared. The best results are achieved by combining the two techniques. The comparative analyses of the motor models show the advantages of the proposed novel stator topology. Findings – It is presented how the peak cogging torque can be substantially decreased due to changes in the stator topology. The constraint is to keep the same stator lamination. By skewing stator stack for one slot pitch 10° the peak cogging torque is threefold reduced. The SMC wedges in slot opening decrease the peak cogging almost four times. The novel stator topology, a combination of the former ones, leads to peak cogging of respectable 0.182 Nm, which is reduced for 7.45 times. Originality/value – The paper presents an original compound technique for cogging torque reduction, by combining the stator stack skewing and inserting SMC wedges in the slot openings.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 79-89
Author(s):  
Yan Liu ◽  
Wenliang Zhao ◽  
Xue Fan ◽  
Xiuhe Wang ◽  
Byung-il Kwon

This paper proposes an optimal design for a surface-mounted permanent magnet motor (SPMM) to reduce torque pulsations, including cogging torque and torque ripple, by using multi-grade ferrite magnets. Based on a conventional SPMM with single-grade ferrite magnets, the proposed SPMM is designed with four-grade ferrite magnets and then optimized to minimize torque pulsations by maintaining the required torque, utilizing the Kriging method and a genetic algorithm. The results obtained by the finite element analysis show that the optimized SPMM with multi-grade ferrite magnets exhibits improved airgap flux density distribution with highly reduced cogging torque and torque ripple by maintaining the same average torque, as compared to the conventional SPMM. Furthermore, the analysis of the working points for the multi-grade ferrite magnets reveals that the optimized SPMM has good durability against the irreversible demagnetization.


Sign in / Sign up

Export Citation Format

Share Document