A New Thin Spatial Beam Element Using the Absolute Nodal Coordinates: Application to a Rotating Strip#

2005 ◽  
Vol 33 (3-4) ◽  
pp. 399-422 ◽  
Author(s):  
Wan-Suk Yoo ◽  
Oleg Dmitrochenko ◽  
Su-Jin Park ◽  
O-Kaung Lim
Author(s):  
R. Y. Yakoub ◽  
A. A. Shabana

Abstract By utilizing the fact that the absolute nodal coordinate formulation leads to a constant mass matrix, a Cholesky decomposition of the mass matrix can be used to obtain a constant velocity transformation matrix. This velocity transformation can be used to express the absolute nodal coordinates in terms of the generalized Cholesky coordinates. In this case, the inertia matrix associated with the Cholesky coordinates is the identity matrix, and therefore, an optimum sparse matrix structure can be obtained for the augmented multibody equations of motions. The implementation of a computer procedure based on the absolute nodal coordinate formulation and Cholesky coordinates is discussed in this paper. A flexible four-bar linkage is presented in this paper in order to demonstrate the use of Cholesky coordinates in the simulation of the small and large deformations in flexible multibody applications. The results obtained from the absolute nodal coordinate formulation are compared to those obtained from the floating frame of reference formulation.


Author(s):  
Jussi T. Sopanen ◽  
Aki M. Mikkola

The objective of this study is to investigate the accuracy of elastic force models that can be used in the absolute nodal coordinate finite element formulation for the analysis of threedimensional beams. The elastic forces of the absolute nodal coordinate formulation can be derived using a continuum mechanics approach. This study investigates the accuracy and usability of such an approach for the three-dimensional absolute nodal coordinate beam element. This study also presents an improvement proposal for the use of a continuum mechanics approach in deriving the expression of the elastic forces of the beam element. The improvement proposal is verified using several numerical examples. Numerical examples show that the proposed elastic force model of the beam element agrees with analytical results as well as with solutions obtained using existing finite element formulation. The results also imply that the beam element does not suffer from the phenomenon called shear locking. In the beam element under investigation, global displacements and slopes are used as the nodal coordinates, which resulted in a large number of nodal degrees of freedom. This study provides a physical interpretation of the nodal coordinates used in the absolute nodal coordinate beam element. It is shown that the beam element based on the absolute nodal coordinate formulation relaxes the assumption of the rigid cross-section and is capable of representing a distortional deformation of the cross-section.


Sign in / Sign up

Export Citation Format

Share Document