Coupled stress and energy criterion for composite failure: Pointwise versus averaged evaluation of the stress criterion

2019 ◽  
Vol 27 (18) ◽  
pp. 1571-1582 ◽  
Author(s):  
Andreas Talmon l’Armée ◽  
Wilfried Becker
Author(s):  
Kevin Kendall

Several ASTM standards on the fracture of glued and welded joints need attention because they do not consider the Griffith energy criterion of cracking which was proposed a century ago. It is almost as if Griffith never existed because the ASTM definition of failure is the stress criterion postulated by Galileo in 1638 in which stress at failure (i.e. strength = force/area) is defined as the determinant of fracture. Irene Martinez Villegas (Villegas, Rans 2021 Phil. Trans. R. Soc. A 376, 20200296. ( doi:10.1098/rsta.2020.0296 )) shows in this volume that attempts to use ASTM D5868 to standardize welded composite (carbon fibre reinforced polymer, CFRP) lap joints reveal major problems. First, the test is a low angle bend–peel test; not shear. Second, the energy required to break the joint is not emphasized so that joints may have high strength properties but also low toughness; third, the fracture force is not proportional to the lap joint area so the concept of strength independent of sample size is false; fourth, as the CFRP panels are made thicker, the strength rises at constant overlap area so the strength can be any value you want; fifth, the strength of larger joints goes down; this is the size effect noted in many bend-cracking tests, much as Galileo suggested for bent beam fracture in his famous book ‘the larger the machine, the greater its weakness'. The purpose of this paper is to demonstrate that poor ASTM ‘shear strength’ standards should be replaced by a definition of welded lap joint performance based on Griffith's energy conservation argument in which fracture surface energy is the main parameter resisting failure. The foundation of this Griffith-style lap joint analysis for long cracks goes back to 1975 but has been largely ignored until now because it does not fit the Griffith equation for cracked sheets, has no ‘stress intensity factor’, and travels at constant speed, not accelerating like the standard Griffith tension crack. This study of tensile delamination shows that a long lap crack is not driven by stress near the crack but by changes in stored elastic energy in the stretched strips remote from the crack tip, while strain energy release rate is negative. It would be more appropriate to call this lap failure a tensile delamination crack. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.


2016 ◽  
Vol 2 ◽  
pp. 2014-2021 ◽  
Author(s):  
Oldřich Ševeček ◽  
Michal Kotoul ◽  
Dominique Leguillon ◽  
Eric Martin ◽  
Raul Bermejo

1995 ◽  
Vol 10 (11) ◽  
pp. 2897-2907 ◽  
Author(s):  
Peter Gumbsch

Atomistic techniques are used to study brittle fracture under opening mode and mixed mode loading conditions. The influence of the discreteness of the lattice and of the lattice-trapping effect on crack propagation is studied using an embedded atom potential for nickel to describe the crack tip. The recently developed FEAt (Finite Element-Atomistic) coupling scheme provides the atomistic core region with realistic boundary conditions. Several crystallographically distinct crack-tip configurations are studied and commonly reveal that brittle cracks under general mixed mode loading situations follow an energy criterion (G-criterion) rather than an opening-stress criterion (Kl-criterion). However, if there are two competing failure modes, they seem to unload each other, which leads to an increase in lattice trapping. Blunted crack tips are studied in the last part of the paper and are compared to the atomically sharp cracks. Depending on the shape of the blunted crack tip, the observed failure modes differ significantly and can drastically disagree with what one would anticipate from a continuum mechanical analysis.


Sign in / Sign up

Export Citation Format

Share Document