Analysis of thermal stresses in FGM-Matrix medium induced by constant heat flux at the far field

Author(s):  
Nilabh Krishna ◽  
Seiichi Nomura
2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Tran X. Phuoc ◽  
Mehrdad Massoudi ◽  
Ping Wang ◽  
Mark L. McKoy

Abstract Thermal stresses may be induced in a hot dry rock when a cold fluid is injected in the well. To study this problem, we look at the thermoelastic response of a hot rock that is suddenly cooled. The cooling is assumed to be either at a constant temperature or at a constant heat flux per unit depth. Our approach is to nondimensionalize the equations and perform a parametric study and look at the temperature distribution and the induced-thermal stresses. The results indicate that depending on the extent of cooling and the cooling time, thermal stresses can be induced. Numerical simulations on sandstone, with an initial uniform temperature of 473 K, are also carried out. The results show that if the cooling is due to the surface temperature maintained at 463 K (10 °C lower than the initial temperature of the hot rock), thermal stresses that are larger than the rock tensile strength could be induced. When the cooling is due to a constant surface heat flux, this temperature can be reached after about 777 days of cooling with a minimum value of a heat flux of −20 W/m.


Author(s):  
Yeshayahu Talmon

To bring out details in the fractured surface of a frozen sample in the freeze fracture/freeze-etch technique,the sample or part of it is warmed to enhance water sublimation.One way to do this is to raise the temperature of the entire sample to about -100°C to -90°C. In this case sublimation rates can be calculated by using plots such as Fig.1 (Talmon and Thomas),or by simplified formulae such as that given by Menold and Liittge. To achieve higher rates of sublimation without heating the entire sample a radiative heater can be used (Echlin et al.). In the present paper a simplified method for the calculation of the rates of sublimation under a constant heat flux F [W/m2] at the surface of the sample from a heater placed directly above the sample is described.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamdy M. Youssef ◽  
Najat A. Alghamdi

Abstract This work is dealing with the temperature reaction and response of skin tissue due to constant surface heat flux. The exact analytical solution has been obtained for the two-temperature dual-phase-lag (TTDPL) of bioheat transfer. We assumed that the skin tissue is subjected to a constant heat flux on the bounding plane of the skin surface. The separation of variables for the governing equations as a finite domain is employed. The transition temperature responses have been obtained and discussed. The results represent that the dual-phase-lag time parameter, heat flux value, and two-temperature parameter have significant effects on the dynamical and conductive temperature increment of the skin tissue. The Two-temperature dual-phase-lag (TTDPL) bioheat transfer model is a successful model to describe the behavior of the thermal wave through the skin tissue.


Sign in / Sign up

Export Citation Format

Share Document