Advances in Synthesis and the Role of Molecular Geometry in Liquid Crystallinity

1969 ◽  
Vol 7 (1) ◽  
pp. 127-151 ◽  
Author(s):  
George W. Gray
2008 ◽  
Vol 07 (04) ◽  
pp. 805-820 ◽  
Author(s):  
XIANGZHU LI ◽  
JOSEF PALDUS

The reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR CCSD) that employs a modest-size MR CISD wave function as an external source for the most important (primary) triples and quadruples in order to account for the nondynamic correlation effects in the presence of quasidegeneracy, and which is further perturbatively corrected for the remaining (secondary) triples, RMR CCSD(T), is employed to compute the molecular geometry and the energy of the lowest-lying singlet and triplet states, as well as the corresponding singlet–triplet splitting, for all possible isomers of the m, n-pyridyne diradicals. A comparison is made with earlier results that were obtained by other authors, and the role of the multireference effects for both the geometry and the spin multiplicity of the lowest state, as described by the RMR-type methods, is demonstrated on the example of 2,6- and 3,5-pyridynes.


MRS Bulletin ◽  
2003 ◽  
Vol 28 (12) ◽  
pp. 913-917 ◽  
Author(s):  
Dieter Richter ◽  
Dan A. Neumann

AbstractKnowledge of the dynamic dimension of materials is an extremely important ingredient for understanding their properties. Neutron scattering is uniquely capable of revealing aspects of the atomic and molecular geometry of motions over a wide range of time scales. To illustrate this fact, we give a number of examples from different areas of materials science. We discuss the diffusion of hydrogen in protonic conductors; the hydration of portland cement; and aspects of the molecular rheology of polymers, emphasizing in particular the effect of branching. All of these experiments have added important basic information to the understanding of the respective systems. With the advent of the new megawatt neutron spallation sources, the role of neutron scattering in revealing the dynamical properties of materials is expected to increase substantially.


2002 ◽  
Vol 57 (8) ◽  
pp. 645-649
Author(s):  
Durga Prasad Ojha ◽  
V. G. K. M. Pisipati

ECCPA statistical analysis has been carried out to determine the configurational preferences of a pair of 5-(4-ethylcyclohexyl)-2-(4-cyanophenyl) pyrimidine () molecules. The CNDO/2 method has been employed to evaluate the net atomic charge and atomic dipole components at each atomic centre of the molecule. The configurational energy has been computed using the Rayleigh-Schrödinger perturbation theory. The total interaction energies obtained by these computations were used to calculate the probability of each configuration in vacuum and in a dielectric medium (benzene) at the phase transition temperature using the Maxwell-Boltzmann formula. On the basis of stacking, in-plane and terminal interaction energy calculations, all possible geometrical arrangements of the molecular pair have been considered. An attempt has been made to explain the nematogenic behavior of liquid crystals and thereby develop a molecular model for liquid crystallinity.


2020 ◽  
Vol 145 ◽  
pp. 596-603 ◽  
Author(s):  
Ena Marlina ◽  
W. Wijayanti ◽  
L. Yuliati ◽  
I.N.G. Wardana

2005 ◽  
Vol 83 (9) ◽  
pp. 1382-1390 ◽  
Author(s):  
Vladimir V Popik

Relaxed scans of potential energy surfaces for the loss of nitrogen from four different diazocarbonyl compounds: 3-diazo-2-butanone (1), 2-diazocyclohexanone (2), methyl diazomalonate (3), and diazo Meldrum's acid (4), were conducted at the B3LYP/6-31+G(d,p) level. The geometries of species and transition states involved in the process were optimized at the B3LYP/6-311+G(3df,2p) level, while electronic energies were computed using the MP2(full)/aug-cc-pVTZ method. These calculations suggest that the rigidity of cyclic molecules, rather than the conformational structure of the starting diazocarbonyl compounds, defines the pathway of the dediazotization reaction. In acyclic diazocarbonyl compounds, loss of nitrogen results in the formation of a carbene, which is stabilized by the overlap of the system of carbonyl group and the unshared electron pair of a singlet carbene. On the contrary, in small- to medium-sized cyclic systems, carbonyl carbenes are unable to attain a stabilizing orthogonal conformation. Consequently, cyclic carbonyl carbenes are less stable, and the concerted Wolff rearrangement becomes the predominant process. Transition states for the concerted Wolff rearrangement and for the formation of carbonyl carbenes have a very similar geometry.Key words: diazocarbonyl compounds, Wolff rearrangement, conformation, carbene, ketene.


2018 ◽  
Vol 148 (16) ◽  
pp. 164507 ◽  
Author(s):  
P. M. Singer ◽  
D. Asthagiri ◽  
Z. Chen ◽  
A. Valiya Parambathu ◽  
G. J. Hirasaki ◽  
...  

2001 ◽  
Vol 58 (1) ◽  
pp. 62-77 ◽  
Author(s):  
Richard E. Marsh ◽  
Moshe Kapon ◽  
Shengzhi Hu ◽  
Frank H. Herbstein

Some 60 examples of crystal structures are presented which can be better described in space groups of higher symmetry than used in the original publications. These are divided into three categories: (A) incorrect Laue group (33 examples), (B) omission of a center of symmetry (22 examples), (C) omission of a center of symmetry coupled with a failure to recognize systematic absences (nine examples). Category A errors do not lead to significant errors in molecular geometry, but these do accompany the two other types of error. There are 19 of the current set of examples which have publication dates of 1996 or later. Critical scrutiny on the part of authors, editors and referees is needed to eliminate such errors in order not to impair the role of crystal structure analysis as the chemical court of last resort.


Sign in / Sign up

Export Citation Format

Share Document