higher symmetry
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 24)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
John Krautwurst ◽  
Rainer Lamann ◽  
Uwe Ruschewitz

Abstract Reaction of Sc(NO3)3·5H2O with K(H2 pF-BTC) – the monopotassium salt of perfluorinated trimesic acid – led to the formation of single crystals of [ Sc ( p F − BTC ) ( H 2 O ) 3 ] ∞ 1 ⋅ 4 H 2 O ${}_{\infty }{}^{1}[\text{Sc}(pF-\text{BTC}){({\text{H}}_{2}\text{O})}_{3}]\cdot 4{\text{H}}_{2}\text{O}$ ( P 1 ‾ $P‾{1}$ , Z = 2). DTA/TGA measurements revealed that all water molecules were released below 200 °C. Using powder synchrotron radiation diffraction data, the crystal structure of the residue of the dehydration was elucidated and the results confirmed the formula [ Sc ( p F − BTC ) ] ∞ 3 ${}_{\infty }{}^{3}[\text{Sc}(pF-\text{BTC})]$ (Fddd, Z = 16). The compound is similar, but not isostructural to the recently published UoC-4 (I41/amd, Z = 8; UoC: University of Cologne) with a difluorinated trimesate (dF-BTC3–) as connecting linker. Both compounds can be classified as metal-organic frameworks (MOFs) consisting of a 3D network of Sc3+ nodes connected by the fluorinated trimesate ligands. They contain small pores, but their opening windows are too small for any guest molecules to pass. Remarkably, UoC-4 with a lower symmetric ligand (dF-BTC3–) crystallizes in a higher symmetry space group (I41/amd) than UoC-6 (Fddd). This can be rationalized by increasing torsion angles of the carboxylate moieties in the pF-BTC3– ligand.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Afshin Moradi ◽  
Martijn Wubs

AbstractThe electrostatic theory of surface magnetoplasmons on a semi-infinite magnetized electron gas is generalized to mixed Faraday–Voigt configurations. We analyze a mixed Faraday–Voigt type of electrostatic surface waves that is strongly direction-dependent, and may be realized on narrow-gap semiconductors in the THz regime. A general expression for the dispersion relation is presented, with its dependence on the magnitude and orientation of the applied magnetic field. Remarkably, the group velocity is always perpendicular to the phase velocity. Both velocity and energy relations of the found magnetoplasmons are discussed in detail. In the appropriate limits the known surface magnetoplasmons in the higher-symmetry Faraday and Voigt configurations are recovered.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1119
Author(s):  
Pavel V. Nesterov ◽  
Vladimir V. Shilovskikh ◽  
Alexander D. Sokolov ◽  
Vladislav V. Gurzhiy ◽  
Alexander S. Novikov ◽  
...  

Supramolecular organic systems can be used as a host for the encapsulation of small organic molecules. Here, we chose melamine barbiturate as a robust system capable of supramolecular assembly and the Rhodamine 6G dye entrapment as a guest molecule. The encapsulation of the dye was investigated by UV-visible spectroscopy, SEM and optical fluorescent microscopy while the insight into the crystal structure of the system was obtained by single crystal and powder XRD. For investigation of the system’s properties on a molecular level, the DFT and Classical Molecular Dynamics methods were utilized. Surprisingly, both theoretical and experimental data show not only the successful encapsulation of Rhodamine 6G molecules inside the supramolecular assembly, but also that inclusion of such molecules leads to the drastic improvement in the organic crystal shape. The melamine barbiturate in presence of the Rhodamine 6G molecules tend to form crystals with lesser degree of twinning and higher symmetry in shape than the ones without dye molecules.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wojciech Wegner ◽  
Jakub J. Zakrzewski ◽  
Mikolaj Zychowicz ◽  
Szymon Chorazy

AbstractLuminescent single-molecule magnets (SMMs) constitute a class of molecular materials offering optical insight into magnetic anisotropy, magnetic switching of emission, and magnetic luminescent thermometry. They are accessible using lanthanide(III) complexes with advanced organic ligands or metalloligands. We present a simple route to luminescent SMMs realized by the insertion of well-known organic cations, tetrabutylammonium and tetraphenylphosphonium, into dysprosium(III) borohydrides, the representatives of metal borohydrides investigated due to their hydrogen storage properties. We report two novel compounds, [n-Bu4N][DyIII(BH4)4] (1) and [Ph4P][DyIII(BH4)4] (2), involving DyIII centers surrounded by four pseudo-tetrahedrally arranged BH4– ions. While 2 has higher symmetry and adopts a tetragonal unit cell (I41/a), 1 crystallizes in a less symmetric monoclinic unit cell (P21/c). They exhibit yellow room-temperature photoluminescence related to the f–f electronic transitions. Moreover, they reveal DyIII-centered magnetic anisotropy generated by the distorted arrangement of four borohydride anions. It leads to field-induced slow magnetic relaxation, well-observed for the magnetically diluted samples, [n-Bu4N][YIII0.9DyIII0.1(BH4)4] (1@Y) and [Ph4P][YIII0.9DyIII0.1(BH4)4] (2@Y). 1@Y exhibits an Orbach-type relaxation with an energy barrier of 26.4(5) K while only the onset of SMM features was found in 2@Y. The more pronounced single-ion anisotropy of DyIII complexes of 1 was confirmed by the results of the ab initio calculations performed for both 1–2 and the highly symmetrical inorganic DyIII borohydrides, α/β-Dy(BH4)3, 3 and 4. The magneto-luminescent character was achieved by the implementation of large organic cations that lower the symmetry of DyIII centers inducing single-ion anisotropy and separate them in the crystal lattice enabling the emission property. These findings are supported by the comparison with 3 and 4, crystalizing in cubic unit cells, which are not emissive and do not exhibit SMM behavior.


Author(s):  
S. R. Parkin

Twinning by pseudo-merohedry is a common phenomenon in small-molecule crystallography. In cases where twin-component volume fractions are markedly different, structure solution is often no more difficult than for non-twinned structures of similar complexity. When twin-component volume fractions are similar, however, structure solution can be much more of a problem. This paper presents hints and tips for such cases by means of three worked examples. The first example presents the most common (and simplest) case of a two-component pseudo-orthorhombic twin. The second example describes structure solution of a reticular threefold pseudo-hexagonal twin that benefits from use of an unconventional space-group setting. The third example covers structure solution of a reticular fourfold pseudo-tetragonal twin. All three structures are ultimately shown to be monoclinic crystals that twin as a consequence of unit-cell metrics that mimic those of higher symmetry crystal systems.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 952
Author(s):  
Takahito Otsuka ◽  
Martin Brehl ◽  
Maria Rita Cicconi ◽  
Dominique de Ligny ◽  
Tomokatsu Hayakawa

Thermal evolutions of calcium-tungstate-borate glasses were investigated for the development of luminescent glass-ceramics by using Eu3+ dopant in a borate glass matrix with calcium tungstate, which was expected to have a combined character of glass and ceramics. This study revealed that single-phase precipitation of CaWO4 crystals in borate glass matrix was possible by heat-treatment at a temperature higher than glass transition temperature Tg for (100−x) (33CaO-67B2O3)−xCa3WO6 (x = 8−15 mol%). Additionally, the crystallization of CaWO4 was found by Raman spectroscopy due to the formation of W=O double bondings of WO4 tetrahedra in the pristine glass despite starting with the higher calcium content of Ca3WO6. Eu3+ ions were excluded from the CaWO4 crystals and positioned in the borate glass phase as a stable site for them, which provided local environments in higher symmetry around Eu3+ ions.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6871
Author(s):  
Zvonimir Sipus ◽  
Katarina Cavar ◽  
Marko Bosiljevac ◽  
Eva Rajo-Iglesias

Recently, there has been an increased interest in exploring periodic structures with higher symmetry due to various possibilities of utilizing them in novel electromagnetic applications. The aim of this paper is to discuss design issues related to the implementation of holey glide-symmetric periodic structures in waveguide-based components. In particular, one can implement periodic structures with glide symmetry in one or two directions, which we differentiate as 1D and 2D glide symmetry, respectively. The key differences in the dispersion and bandgap properties of these two realizations are presented and design guidelines are indicated, with special care devoted to practical issues. Focusing on the design of gap waveguide-based components, we demonstrate using simulated and measured results that in practice it is often sufficient to use 1D glide symmetry, which is also simpler to mechanically realize, and if larger attenuation of lateral waves is needed, a diagonally directed 2D glide symmetric structure should be implemented. Finally, an analysis of realistic holes with conical endings is performed using a developed effective hole depth method, which combined with the presented analysis and results can serve as a valuable tool in the process of designing novel electrically-large waveguide-based components.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Liang Kong ◽  
Tian Lan ◽  
Xiao-Gang Wen ◽  
Zhi-Hao Zhang ◽  
Hao Zheng
Keyword(s):  

2020 ◽  
Vol 20 (8) ◽  
pp. 5182-5191
Author(s):  
Xin Fu Tan ◽  
Adrian Xiao Bin Yong ◽  
Qinfen Gu ◽  
Wenhui Yang ◽  
Kohei Aso ◽  
...  

Sn-based compounds are promising candidates for application as anodes in lithium-ion batteries (LIBs) due to the favourable storage capacity of Sn at 993 mAh g−1 compared to carbon at 372 mAh g−1. The use of Sn-based anodes also avoids some of the safety concerns associated with carbon anodes. However, the large volume changes during lithiation and delithiation of pure Sn anodes often results in poor cyclic performance. Alloying Sn with Cu, an element inactive with respect to Li, buffers the expansion stresses and can improve cycling performance. Cu6Sn5 is therefore a promising candidate anode material. In this work, the effects of Sb and Zn additions on the morphology, crystal structure, atomic arrangements and the electrochemical performance of the anodes were evaluated. Characterisation with synchrotron X-ray powder diffraction and Cs-corrected transmission electron microscopy revealed the larger lattice parameters, higher symmetry crystal structures and well-ordered atomic arrangements in the Sb and Zn modified electrodes, which resulted in a more than 50% increase in cycling capacity from 490 mAh g−1 to 760 mAh g−1.


Sign in / Sign up

Export Citation Format

Share Document