The role of molecular geometry in the Wolff rearrangement of α-diazocarbonyl compounds — Conformational control or structural constraints?

2005 ◽  
Vol 83 (9) ◽  
pp. 1382-1390 ◽  
Author(s):  
Vladimir V Popik

Relaxed scans of potential energy surfaces for the loss of nitrogen from four different diazocarbonyl compounds: 3-diazo-2-butanone (1), 2-diazocyclohexanone (2), methyl diazomalonate (3), and diazo Meldrum's acid (4), were conducted at the B3LYP/6-31+G(d,p) level. The geometries of species and transition states involved in the process were optimized at the B3LYP/6-311+G(3df,2p) level, while electronic energies were computed using the MP2(full)/aug-cc-pVTZ method. These calculations suggest that the rigidity of cyclic molecules, rather than the conformational structure of the starting diazocarbonyl compounds, defines the pathway of the dediazotization reaction. In acyclic diazocarbonyl compounds, loss of nitrogen results in the formation of a carbene, which is stabilized by the overlap of the system of carbonyl group and the unshared electron pair of a singlet carbene. On the contrary, in small- to medium-sized cyclic systems, carbonyl carbenes are unable to attain a stabilizing orthogonal conformation. Consequently, cyclic carbonyl carbenes are less stable, and the concerted Wolff rearrangement becomes the predominant process. Transition states for the concerted Wolff rearrangement and for the formation of carbonyl carbenes have a very similar geometry.Key words: diazocarbonyl compounds, Wolff rearrangement, conformation, carbene, ketene.


2020 ◽  
Author(s):  
zheng zhao ◽  
Phil bourne ◽  
Hao Hu ◽  
Huanyu Chu

Acylphosphatase is one of the vital enzymes in many organs/tissues to catalyze an acylphosphate molecule into carboxylate and phosphate. Here we use a combined <i>ab initio</i> QM/MM approach to reveal the catalytic mechanism of the benzoylphosphate-bound acylphosphatase system. Using a multi-dimensional reaction-coordinates-driving scheme, we obtained a detailed catalytic process including one nucleophilic-attack and then an ensuing carbonyl-shuttle catalytic mechanism by calculating two-dimensional potential energy surfaces. We also obtained an experiment-agreeable energy barrier and validated the role of the key amino acid Asn38. Additionally, we qualified the transition state stabilization strategy based on the amino acids-contributed interaction networks revealed in the enzymatic environment. This study provided usefule insights into the underlying catalytic mechanism to contribute to disease-involved research.



2007 ◽  
Vol 118 (3) ◽  
pp. 649-663 ◽  
Author(s):  
Rachel Crespo-Otero ◽  
Yoana Pérez-Badell ◽  
Juan Alexander Padrón-García ◽  
Luis Alberto Montero-Cabrera


2001 ◽  
Vol 114 (24) ◽  
pp. 10816-10834 ◽  
Author(s):  
Thanh Lam Nguyen ◽  
Alexander M. Mebel ◽  
Sheng H. Lin




1984 ◽  
Vol 62 (12) ◽  
pp. 1806-1833 ◽  
Author(s):  
Michael N. R. Ashfold ◽  
J. Mark Bayley ◽  
Richard N. Dixon

Two new electronic states of H2O and D2O have been identified in the energy range 84 000–88 000 cm−1 as three-photon resonances in four-photon ionization spectroscopy. Simulations of the rotational intensity distributions using asymmetric top three-photon line strength theory, and rotational analyses, characterize the states as B1 and A2. These Rydberg states are assigned to the excitations 4sa1 ← 1b1[Formula: see text] and 3d2 ← 1b1[Formula: see text] on the basis of equilibrium geometries, quantum defects, and the polarization dependence of their three-photon transition probabilities. The identification of the one-photon forbidden 1A2–1A1 transition, together with published vacuum ultraviolet (VUV) absorption spectra, permits a consistent assignment for all five members of the 3d ← 1b1 complex.The [Formula: see text] and [Formula: see text] states arc predissociatcd via both homogeneous and heterogeneous mechanisms. The homogeneous channel from the [Formula: see text] state shows a dramatic isotope effect, being about two orders of magnitude faster in H2O than from equivalent levels of D2O. The heterogeneous predissociation exhibits irregular vibronic and isotopic dependencies, which can be rationalized in terms of the intercessional role of accidental near resonances with levels of the heavily predissociated [Formula: see text] state. The (000) levels of the [Formula: see text] states of H2O and D2O show contrasting heterogeneous predissociation behaviour, which can be interpreted with a knowledge of the relevant potential energy surfaces and the electronic–rotational Coriolis interactions that couple the states.



2000 ◽  
Vol 113 (6) ◽  
pp. 2282-2289 ◽  
Author(s):  
Juan F. Arenas ◽  
Juan I. Marcos ◽  
Isabel López-Tocón ◽  
Juan C. Otero ◽  
Juan Soto


2013 ◽  
Vol 583 ◽  
pp. 203-208 ◽  
Author(s):  
Josep Maria Bofill ◽  
Wolfgang Quapp ◽  
Marc Caballero


Sign in / Sign up

Export Citation Format

Share Document