Biodiesel production from a free fatty acid containing Karanja oil by a single-step heterogeneously catalyzed process

2016 ◽  
Vol 13 (5) ◽  
pp. 489-496 ◽  
Author(s):  
Arun Kumar Gupta ◽  
Mani Rahul Kiro ◽  
Goutam Deo
2018 ◽  
Vol 156 ◽  
pp. 03002
Author(s):  
Iwan Ridwan ◽  
Mukhtar Ghazali ◽  
Adi Kusmayadi ◽  
Resza Diwansyah Putra ◽  
Nina Marlina ◽  
...  

The oleic acid solubility in methanol is low due to two phase separation, and this causes a slow reaction time in biodiesel production. Tetrahydrofuran as co-solvent can decrease the interfacial surface tension between methanol and oleic acid. The objective of this study was to investigate the effect of co-solvent, methanol to oleic acid molar ratio, catalyst amount, and temperature of the reaction to the free fatty acid conversion. Oleic acid esterification was conducted by mixing oleic acid, methanol, tetrahydrofuran and Amberlyst 15 as a solid acid catalyst in a batch reactor. The Amberlyst 15 used had an exchange capacity of 2.57 meq/g. Significant free fatty acid conversion increments occur on biodiesel production using co-solvent compared without co-solvent. The highest free fatty acid conversion was obtained over methanol to the oleic acid molar ratio of 25:1, catalyst use of 10%, the co-solvent concentration of 8%, and a reaction temperature of 60°C. The highest FFA conversion was found at 28.6 %, and the steady state was reached after 60 minutes. In addition, the use of Amberlyst 15 oleic acid esterification shows an excellent performance as a solid acid catalyst. Catalytic activity was maintained after 4 times repeated use and reduced slightly in the fifth use.


2014 ◽  
Vol 625 ◽  
pp. 897-900 ◽  
Author(s):  
Junaid Ahmad ◽  
Suzana Yusup ◽  
Awais Bokhari ◽  
Ruzaimah Nik Mohammad Kamil

Energy crises, depletion of fossil fuel reservoirs, environmental pollution, global warming, green house effect and starvation are becoming very serious problems in the modern world. Biodiesel is a liquid fuel which can be the best alternative for the fossil fuels. In this study, non-edible rubber seed oil (RSO) with high free fatty acid (FFA) content (45%) was used for the production of biodiesel. The process comprises of two steps, in the first step acid esterification was used to reduce the FFA and in the second step base transesterification was employed to convert the treated oil into rubber seed oil methyl esters (RSOMEs). The conversion yield of biodiesel was analyzed using gas chromatography. The fuel properties were tested using the standard procedure of ASTM D6751 and EN14214. All the properties were within the ranges of the biodiesel standards. The result shows that rubber seed oil is a potential non-edible source for biodiesel production.


2014 ◽  
Vol 82 ◽  
pp. 83-91 ◽  
Author(s):  
Wei Liu ◽  
Ping Yin ◽  
Jiang Zhang ◽  
Qinghua Tang ◽  
Rongjun Qu

Author(s):  
V.H. Wilson ◽  
V. Yalini

Fossil fuel is getting exhausted at a fast rate and contributes to high carbon monoxide emissions. Biodiesel, being environmentally friendly, has better performance than diesel. Castor oil is an easily available vegetable oil in India. But its high viscosity leads to blockage of the fuel lines. The amount of free fatty acid more than 1% leads to soap formation which necessitates the biodiesel production in a two step process. The first step of acid catalyzed esterification process reduces the free fatty acid content of castor oil to below 1%. The second step of transesterification process converts the preheated oil to castor biodiesel. This two step process gave a maximum yield of 90%.The methyl castor oil (biodiesel) is blended with diesel in different proportions on volume basis as 15:85 (B15), 25:75 (B25), and 35:65 (B35). These blended oils are used to run a single cylinder four stroke compression ignition engine with different coatings of pistons, to study and compare the engine performance and emission characteristics at different load conditions.


Fuel ◽  
2015 ◽  
Vol 158 ◽  
pp. 372-378 ◽  
Author(s):  
Phaedra Jaggernauth-Ali ◽  
Ejae John ◽  
Puran Bridgemohan

2017 ◽  
Vol 14 (8) ◽  
pp. 687-693 ◽  
Author(s):  
Jilse Sebastian ◽  
Chandrasekharan Muraleedharan ◽  
Arockiasamy Santhiagu

Sign in / Sign up

Export Citation Format

Share Document