scholarly journals RNA binding specificity of Ebola virus transcription factor VP30

RNA Biology ◽  
2016 ◽  
Vol 13 (9) ◽  
pp. 783-798 ◽  
Author(s):  
Julia Schlereth ◽  
Arnold Grünweller ◽  
Nadine Biedenkopf ◽  
Stephan Becker ◽  
Roland K. Hartmann
2019 ◽  
Author(s):  
Yuki Takamatsu ◽  
Verena Krähling ◽  
Larissa Kolesnikova ◽  
Sandro Halwe ◽  
Clemens Lier ◽  
...  

AbstractEbola virus (EBOV) causes a severe and often fatal disease for which no approved vaccines or antivirals are currently available. EBOV transcription requires the sequential phosphorylation and dephosphorylation of the viral transcription factor VP30. While dephosphorylation is carried out by phosphatases PP2A and PP1, the VP30-specific kinase is unknown. Here, we report that serine-arginine protein kinase 1 and 2 (SRPK1 and SRPK2) phosphorylate serine-29 of VP30, which is located in an N-terminal R26xxS29 motif. Interaction with VP30 via the R26xxS29 motif recruits SRPK1 into EBOV-induced inclusion bodies, the sites of viral RNA synthesis and an inhibitor of SRPK1/SRPK2 downregulates primary viral transcription. When the SRPK1 recognition motif of VP30 was mutated in a recombinant EBOV, virus replication was severely impaired. It is presumed that the interplay between SRPK1 and PP2A in the EBOV inclusions provides a comprehensive regulatory circuit to ensure the activity of VP30 in EBOV transcription.


2016 ◽  
Vol 90 (16) ◽  
pp. 7481-7496 ◽  
Author(s):  
Nadine Biedenkopf ◽  
Julia Schlereth ◽  
Arnold Grünweller ◽  
Stephan Becker ◽  
Roland K. Hartmann

ABSTRACTThe template for Ebola virus (EBOV) transcription and replication is the helical viral nucleocapsid composed of the viral negative-sense (−) RNA genome, which is complexed by the nucleoprotein (NP), VP35, polymerase L, VP24, and VP30. While viral replication is exerted by polymerase L and its cofactor VP35, EBOV mRNA synthesis is regulated by the viral nucleocapsid protein VP30, an essential EBOV-specific transcription factor. VP30 is a homohexameric phosphoprotein containing a nonconventional zinc finger. The transcriptional support activity of VP30 is strongly influenced by its phosphorylation state. We studied here how RNA binding contributed to VP30's function in transcriptional activation. Using a novel mobility shift assay and the 3′-terminal 154 nucleotides of the EBOV genome as a standard RNA substrate, we detected that RNA binding of VP30 was severely impaired by VP30 mutations that (i) destroy the protein's capability to form homohexamers, (ii) disrupt the integrity of its zinc finger domain, (iii) mimic its fully phosphorylated state, or (iv) alter the putative RNA binding region. RNA binding of the mutant VP30 proteins correlated strongly with their transcriptional support activity. Furthermore, we showed that the interaction between VP30 and the polymerase cofactor VP35 is RNA dependent, while formation of VP30 homohexamers and VP35 homotetramers is not. Our data indicate that RNA binding of VP30 is essential for its transcriptional support activity and stabilizes complexes of VP35/L polymerase with the (−) RNA template to favor productive transcriptional initiation in the presence of termination-active RNA secondary structures.IMPORTANCEEbola virus causes severe fevers with unusually high case fatality rates. The recent outbreak of Ebola virus in West Africa claimed more than 11,000 lives and threatened to destabilize a whole region because of its dramatic effects on the public health systems. It is currently not completely understood how Ebola virus manages to balance viral transcription and replication in the infected cells. This study shows that transcriptional support activity of the Ebola virus transcription factor VP30 is highly correlated with its ability to bind viral RNA. The interaction between VP30 and VP35, the Ebola virus polymerase cofactor, is dependent on the presence of RNA as well. Our data contribute to the understanding of the dynamic interplay between nucleocapsid proteins and the viral RNA template in order to promote viral RNA synthesis.


2018 ◽  
Vol 46 (9) ◽  
pp. 4771-4782 ◽  
Author(s):  
Yang-Yang Zhao ◽  
Miao-Wei Mao ◽  
Wen-Jing Zhang ◽  
Jue Wang ◽  
Hai-Tao Li ◽  
...  

2000 ◽  
Vol 81 (10) ◽  
pp. 2481-2484 ◽  
Author(s):  
Marcus Klein ◽  
Hans J. Eggers ◽  
Birgit Nelsen-Salz

Polypeptide 2C is essential for picornavirus replication. Although many data on multiple functions of this highly conserved protein are available, the mechanism of RNA binding is still obscure. In this work, protein 2C of echovirus-9 strain Barty was expressed as a histidine-tagged protein in E. coli followed by nondenaturing purification to homogeneity. After incubation of 2C protein with different kinds of RNA fragments, binding was shown in gel retardation assays. Competition experiments revealed that 2C targets linear RNA unspecifically; however, single-stranded linear DNA does not react with this protein. In contrast to poliovirus, protein 2C of echovirus-9 only recognizes RNA with a low content of secondary structures. This may be a first hint of a different binding specificity of 2C in echo- and polioviruses.


Sign in / Sign up

Export Citation Format

Share Document