scholarly journals Role of intrinsic DNA binding specificity in defining target genes of the mammalian transcription factor PDX1

2004 ◽  
Vol 32 (1) ◽  
pp. 54-64 ◽  
Author(s):  
A. Liberzon
1998 ◽  
Vol 18 (7) ◽  
pp. 4079-4088 ◽  
Author(s):  
Ingemar Pongratz ◽  
Camilla Antonsson ◽  
Murray L. Whitelaw ◽  
Lorenz Poellinger

ABSTRACT The dioxin receptor is a ligand-regulated transcription factor that mediates signal transduction by dioxin and related environmental pollutants. The receptor belongs to the basic helix-loop-helix (bHLH)–Per-Arnt-Sim (PAS) family of factors, which, in addition to the bHLH motif, contain a PAS region of homology. Upon activation, the dioxin receptor dimerizes with the bHLH-PAS factor Arnt, enabling the receptor to recognize xenobiotic response elements in the vicinity of target genes. We have studied the role of the PAS domain in dimerization and DNA binding specificity of the dioxin receptor and Arnt by monitoring the abilities of the individual bHLH domains and different bHLH-PAS fragments to dimerize and bind DNA in vitro and recognize target genes in vivo. The minimal bHLH domain of the dioxin receptor formed homodimeric complexes, heterodimerized with full-length Arnt, and together with Arnt was sufficient for recognition of target DNA in vitro and in vivo. In a similar fashion, only the bHLH domain of Arnt was necessary for DNA binding specificity in the presence of the dioxin receptor bHLH domain. Moreover, the bHLH domain of the dioxin receptor displayed a broad dimerization potential, as manifested by complex formation with, e.g., the unrelated bHLH-Zip transcription factor USF. In contrast, a construct spanning the dioxin receptor bHLH domain and an N-terminal portion of the PAS domain failed to form homodimers and was capable of dimerizing only with Arnt. Thus, the PAS domain is essential to confer dimerization specificity of the dioxin receptor.


1999 ◽  
Vol 96 (3) ◽  
pp. 811-817 ◽  
Author(s):  
J. F. Schildbach ◽  
A. W. Karzai ◽  
B. E. Raumann ◽  
R. T. Sauer

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Jessica Marie Rodriguez Rios ◽  
Emili Patricia Rosado Rodríguez ◽  
José Arcadio Rodríguez Martínez

2008 ◽  
Vol 379 (3) ◽  
pp. 627-643 ◽  
Author(s):  
Irma Lozada-Chávez ◽  
Vladimir Espinosa Angarica ◽  
Julio Collado-Vides ◽  
Bruno Contreras-Moreira

1996 ◽  
Vol 16 (7) ◽  
pp. 3338-3349 ◽  
Author(s):  
P Shore ◽  
A J Whitmarsh ◽  
R Bhaskaran ◽  
R J Davis ◽  
J P Waltho ◽  
...  

Several mechanisms are employed by members of transcription factor families to achieve sequence-specific DNA recognition. In this study, we have investigated how members of the ETS-domain transcription factor family achieve such specificity. We have used the ternary complex factor (TCF) subfamily as an example. ERK2 mitogen-activated protein kinase stimulates serum response factor-dependent and autonomous DNA binding by the TCFs Elk-1 and SAP-la. Phosphorylated Elk-1 and SAP-la exhibit specificities of DNA binding similar to those of their isolated ETS domains. The ETS domains of Elk-1 and SAP-la and SAP-2 exhibit related but distinct DNA-binding specificities. A single residue, D-69 (Elk-1) or V-68 (SAP-1), has been identified as the critical determinant for the differential binding specificities of Elk-1 and SAP-1a, and an additional residue, D-38 (Elk-1) or Q-37 (SAP-1), further modulates their DNA binding. Creation of mutations D38Q and D69V is sufficient to confer SAP-la DNA-binding specificity upon Elk-1 and thereby allow it to bind to a greater spectrum of sites. Molecular modelling indicates that these two residues (D-38 and D-69) are located away from the DNA-binding interface of Elk-1. Our data suggest a mechanism in which these residues modulate DNA binding by influencing the interaction of other residues with DNA.


Sign in / Sign up

Export Citation Format

Share Document