Adsorption Kinetics and Thermodynamics of Acid Blue 25 and Methylene Blue Dye Solutions on Natural Sepiolite

Author(s):  
Zhao-Xiang Han ◽  
Zhen Zhu ◽  
Dan-Dan Wu ◽  
Jue Wu ◽  
Yu-Rong Liu
2020 ◽  
Vol 309 ◽  
pp. 113171 ◽  
Author(s):  
Mehmet Harbi Calimli ◽  
Mehmet Salih Nas ◽  
Hakan Burhan ◽  
Sibel Demiroglu Mustafov ◽  
Özkan Demirbas ◽  
...  

2016 ◽  
Vol 235 ◽  
pp. 78-86 ◽  
Author(s):  
Hamza Aysan ◽  
Serpil Edebali ◽  
Celalettin Ozdemir ◽  
Muazzez Celi̇k Karakaya ◽  
Necati Karakaya

2020 ◽  
Vol 23 (10) ◽  
pp. 370-376
Author(s):  
Thamrin Azis ◽  
La Ode Ahmad ◽  
Keke Awaliyah ◽  
Laode Abdul Kadir

Research on the equilibrium and adsorption kinetics of methylene blue dye using tannin gel from the Tingi tree (Ceriops tagal) has been carried out. This study aims to determine the capacity and adsorption kinetics of tannin gel against methylene blue dye. Several parameters, such as the effect of contact time, pH, and methylene blue dye concentration on adsorption, were also studied. Based on the research results, the optimum adsorption process is a contact time of 30 minutes and a pH of 7. The adsorption capacity increased to a concentration of 80 mg/L with a maximum adsorption capacity (qm) of 49.261 mg/g. The adsorption process follows the pseudo-second-order adsorption kinetics model and the Langmuir isotherm model.


2019 ◽  
Vol 143 ◽  
pp. 323-332 ◽  
Author(s):  
Mohd Shafiq Hakimi Mohd Shaid ◽  
Muhammad Abbas Ahmad Zaini ◽  
Noor Shawal Nasri

Author(s):  
Negar Einollahzadeh ◽  
Mehdi Vosoughi

Introduction: Dyes are materials with a complex structure that enter the environment from textile process such as dyeing and washing. The aim of this study was to investigate the efficiency of the absorption process along with adsorption using by Zeolite @ ZnO in the removing methylene blue dye from textile wastewater. Methods: The structure and morphology of nanoparticles were examined using XRF, FTIR and FESEM techniques. Dye concentrations were determined using a spectrophotometer at 664 nm. In this study, the variables of reaction time, solution pH, adsorbent amount and dye concentration were evaluated. To determine the isotherm and adsorption kinetics, two isotherm models of Langmuir and Freundlich and two kinetics models pseudo-first order pseudo-second order were used. Results: We found that optimal conditions were concentration of 50 mg/l, adsorbent dose of 1 g/l, pH of 11 and a reaction time of 60 minutes.  The removal efficiency under optimal conditions for methylene blue was 95.8%. Conclusion: The results of the isotherm and adsorption kinetics study for methylene blue showed that the adsorption process follows the Langmuir isotherm and quasi-quadratic kinetics. The maximum adsorption capacity of the adsorbent was determined 384 mg/g using the Langmuir model.


2020 ◽  
Author(s):  
Ahmed Mohamed Omer ◽  
Wagih Abdel‑Alim Sadik ◽  
Abdel‑Ghaffar Maghraby El‑Demerdash ◽  
Tamer Mahmoud Tamer ◽  
Randa Eslah Khalifa ◽  
...  

Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


Sign in / Sign up

Export Citation Format

Share Document