scholarly journals Study of Kinetics and Adsorption Isotherm of Methylene Blue Dye using Tannin Gel from Ceriops tagal

2020 ◽  
Vol 23 (10) ◽  
pp. 370-376
Author(s):  
Thamrin Azis ◽  
La Ode Ahmad ◽  
Keke Awaliyah ◽  
Laode Abdul Kadir

Research on the equilibrium and adsorption kinetics of methylene blue dye using tannin gel from the Tingi tree (Ceriops tagal) has been carried out. This study aims to determine the capacity and adsorption kinetics of tannin gel against methylene blue dye. Several parameters, such as the effect of contact time, pH, and methylene blue dye concentration on adsorption, were also studied. Based on the research results, the optimum adsorption process is a contact time of 30 minutes and a pH of 7. The adsorption capacity increased to a concentration of 80 mg/L with a maximum adsorption capacity (qm) of 49.261 mg/g. The adsorption process follows the pseudo-second-order adsorption kinetics model and the Langmuir isotherm model.

Author(s):  
Negar Einollahzadeh ◽  
Mehdi Vosoughi

Introduction: Dyes are materials with a complex structure that enter the environment from textile process such as dyeing and washing. The aim of this study was to investigate the efficiency of the absorption process along with adsorption using by Zeolite @ ZnO in the removing methylene blue dye from textile wastewater. Methods: The structure and morphology of nanoparticles were examined using XRF, FTIR and FESEM techniques. Dye concentrations were determined using a spectrophotometer at 664 nm. In this study, the variables of reaction time, solution pH, adsorbent amount and dye concentration were evaluated. To determine the isotherm and adsorption kinetics, two isotherm models of Langmuir and Freundlich and two kinetics models pseudo-first order pseudo-second order were used. Results: We found that optimal conditions were concentration of 50 mg/l, adsorbent dose of 1 g/l, pH of 11 and a reaction time of 60 minutes.  The removal efficiency under optimal conditions for methylene blue was 95.8%. Conclusion: The results of the isotherm and adsorption kinetics study for methylene blue showed that the adsorption process follows the Langmuir isotherm and quasi-quadratic kinetics. The maximum adsorption capacity of the adsorbent was determined 384 mg/g using the Langmuir model.


2017 ◽  
Vol 13 (27) ◽  
pp. 425
Author(s):  
Azeh Yakubu ◽  
Gabriel Ademola Olatunji ◽  
Folahan Amoo Adekola

This investigation was conducted to evaluate the adsorption capacity of nanoparticles of cellulose origin. Nanoparticles were synthesized by acid hydrolysis of microcrystalline cellulose/cellulose acetate using 64% H3PO4 and characterized using FTIR, XRD, TGA-DTGA, BET and SEM analysis. Adsorption kinetics of Pb (II) ions in aqueous solution was investigated and the effect of initial concentration, pH, time, adsorbent dosage and solution temperature. The results showed that adsorption increased with increasing concentration with removal efficiencies of 60% and 92.99% for Azeh2 and Azeh10 respectively for initial lead concentration of 3 mg/g. The effects of contact time showed that adsorption maximum was attained within 24h of contact time. The maximum adsorption capacity and removal efficiency were achieved at pH6. Small dose of adsorbent had better performance. The kinetics of adsorption was best described by the pseudo-second-Order model while the adsorption mechanism was chemisorption and pore diffusion based on intra-particle diffusion model. The isotherm model was Freundlich. Though, all tested isotherm models relatively showed good correlation coefficients ranging from 0.969-1.000. The adsorption process was exothermic for Azeh-TDI, with a negative value of -12.812 X 103 KJ/mol. This indicates that the adsorption process for Pb by Azeh-TDI was spontaneous. Adsorption by Azeh2 was endothermic in nature.


2020 ◽  
Vol 309 ◽  
pp. 113171 ◽  
Author(s):  
Mehmet Harbi Calimli ◽  
Mehmet Salih Nas ◽  
Hakan Burhan ◽  
Sibel Demiroglu Mustafov ◽  
Özkan Demirbas ◽  
...  

KOVALEN ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 214-221
Author(s):  
Iget Rais ◽  
Nurhaeni ◽  
Ruslan ◽  
Dwi Juli Pusptasari

Biosorbent studies on methylene blue absorption using chitosan from rice conch shell have been carried out. This research was carried out with variations in contact time of 1, 2, 3, 4, 5, and 6 hours with the aim to determine the contact time required to adsorb Methylene Blue dyes by chitosan from rice conch shell with the highest adsorption capacity. The results showed that the contact time required to adsorb Methylene Blue dye by a chitosan from rice conch shell was 6 hours with the highest adsorption capacity of 85.05%. Keywords: Chitosan, adsorption, Methylene Blue


2019 ◽  
Vol 9 (5) ◽  
pp. 337-346
Author(s):  
Imane Lebkiri ◽  
Brahim Abbou ◽  
Lamya Kadiri ◽  
Abdelkarim Ouass ◽  
Youness Essaadaoui ◽  
...  

The present work aims the elimination of an organic dye Methylene Blue (MB) by adsorption on the polyacrylamide (PAAM) hydrogel. Several experiments series were then carried out in order to study the influence on the adsorption capacity of certain parameters such as the mass of the adsorbent, the pH, the contact time, the initial dye concentration and the temperature. The maximal capacity is 1620 mg/g it was obtained at T = 25°C, pH = 6, [BM] = 200 ppm and 0.013g of the adsorbent. The adsorption kinetics of the dye on the support is well described by the first-order model. The adsorption isotherms of the adsorbent/adsorbate systems studied are satisfactorily described by the Langmuir mathematical model. On the other hand, the thermodynamic study revealed that adsorption is spontaneous and endothermic.


Author(s):  
Aline Haas ◽  
Eliane Pereira dos Santos

 With the great generation of colored effluents, several methods for the removal of the color are used, being one of them the method of adsorption in solid medium. In this paper, the in natura orange peel was used as the alternative biomass for the adsorption process of methylene blue, which was characterized by moisture content, pH, apparent density, iodine number, and methylene blue index. To determine the adsorptive capacity of the methylene blue dye, pH 7 was obtained as favorable, the adsorption process showed an adsorption of 82% of the methylene blue dye and a 10 min equilibrium time, where the Freundlich isotherm presented a better adaptation to the adsorption process in orange peel, with its maximum adsorption capacity of 3.9630 mg g-1, for the methylene blue dye. 


2021 ◽  
Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

Abstract In the present work, we modified ZSM-5 zeolite using a bio polymer poly (diallyl dimethyl ammonium chloride) and employed it for the removal of cationic dye, methylene blue from aqueous solution. The chemical and physical properties of the modified ZSM-5 zeolite were investigated using XRD, FTIR, SEM, TEM, nitrogen adsorption, TGA and 27Al NMR. Modified ZSM-5 zeolite possesses high surface area and pore diameter which was confirmed from SEM, TEM and nitrogen adsorption analysis. Adsorption of methylene blue on zeolite was investigated by batch adsorption technique. The effect of different parameters such as zeolite dosage, initial methylene blue concentration, temperature, pH and contact time on the adsorption process was discussed. Maximum adsorption capacity (4.31 mg/g) was achieved using 0.1g of modified ZSM-5 zeolite at the optimum conditions (initial dye concentration: 10 mg/L, pH: 10, temperature:30oC and contact time: 300 min). The experimental data were fitted into Langmuir and Freundlich models and the results indicate that the adsorption process followed Freundlich isotherm. Kinetic data were investigated using pseudo-first-order and pseudo-second-order models. Kinetic analysis indicates that pseudo-second-order model is more suitable to describe adsorption of MB on modified ZSM-5 zeolite. The reusability test suggests that the adsorbent could be reused at least six times without significant loss in removal efficiency.


Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 111
Author(s):  
Maria Mihăilescu ◽  
Adina Negrea ◽  
Mihaela Ciopec ◽  
Petru Negrea ◽  
Narcis Duțeanu ◽  
...  

Gold is one of the precious metals with multiple uses, whose deposits are much smaller than the global production needs. Therefore, extracting maximum gold quantities from industrial diluted solutions is a must. Am-L-GA is a new material, obtained by an Amberlite XAD7-type commercial resin, functionalized through saturation with L-glutamic acid, whose adsorption capacity has been proved to be higher than those of other materials utilized for gold adsorption. In this context, this article presents the results of a factorial design experiment for optimizing the gold recovery from residual solutions resulting from the electronics industry using Am-L-GA. Firstly, the material was characterized using atomic force microscopy (AFM), to emphasize the material’s characteristics, essential for the adsorption quality. Then, the study showed that among the parameters taken into account in the analysis (pH, temperature, initial gold concentration, and contact time), the initial gold concentration in the solution plays a determinant role in the removal process and the contact time has a slightly positive effect, whereas the pH and temperature do not influence the adsorption capacity. The maximum adsorption capacity of 29.27 mg/L was obtained by optimizing the adsorption process, with the control factors having the following values: contact time ~106 min, initial Au(III) concentration of ~164 mg/L, pH = 4, and temperature of 25 °C. It is highlighted that the factorial design method is an excellent instrument to determine the effects of different factors influencing the adsorption process. The method can be applied for any adsorption process if it is necessary to reduce the number of experiments, to diminish the resources or time consumption, or for expanding the investigation domain above the experimental limits.


Sign in / Sign up

Export Citation Format

Share Document