scholarly journals Lysosomal degradation ensures accurate chromosomal segregation to prevent chromosomal instability

Autophagy ◽  
2020 ◽  
pp. 1-18
Author(s):  
Eugènia Almacellas ◽  
Joffrey Pelletier ◽  
Charles Day ◽  
Santiago Ambrosio ◽  
Albert Tauler ◽  
...  
2019 ◽  
Author(s):  
Eugènia Almacellas ◽  
Charles Day ◽  
Santiago Ambrosio ◽  
Albert Tauler ◽  
Caroline Mauvezin

ABSTRACTLysosomes, as primary degradative organelles, are the end-point of different converging pathways including macroautophagy. To date, lysosome function has mainly focused on interphase cells, while their role during mitosis remains controversial. Mitosis dictates the faithful transmission of genetic material among generations, and perturbations of mitotic division lead to chromosomal instability, a hallmark of cancer. Heretofore, correct mitotic progression relies on the orchestrated degradation of mitotic factors, which was mainly attributed to ubiquitin-triggered proteasome-dependent degradation. Here, we show that mitotic transition does not only rely on proteasome-dependent degradation, as impairment of lysosomes increases mitotic timing and leads to mitotic errors, thus promoting chromosomal instability. Furthermore, we identified several putative lysosomal targets in mitotic cells. Among them, WAPL, a cohesin regulatory protein, emerged as a novel p62-interacting protein for targeted lysosomal degradation. Finally, we characterized an atypical nuclear phenotype, the toroidal nucleus, as a novel biomarker for genotoxic screenings. Our results establish lysosome-dependent degradation as an essential event to prevent genomic instability.


2005 ◽  
Vol 84 (2) ◽  
pp. 107-117 ◽  
Author(s):  
S.C. Reshmi ◽  
S.M. Gollin

Chromosomal instability is a common feature of human tumors, including oral cancer. Although a tumor karyotype may remain quite stable over time, chromosomal instability can lead to ‘variations on a theme’ of a clonal cell population, often with each cell within a tumor possessing a different karyotype. Thus, chromosomal instability appears to be an important acquired feature of tumor cells, since propagation of such a diverse cell population may facilitate evasion of standard therapies. There are several sources of chromosomal instability, although the primary causes appear to be defects in chromosomal segregation, telomere stability, cell-cycle checkpoint regulation, and the repair of DNA damage. Our understanding of the biological basis of chromosomal instability in cancer cells is increasing rapidly, and we are finding that the seemingly unrelated origins of this phenomenon may actually be related through the complex network of cellular signaling pathways. Here, we review the general causes of chromosomal instability in human tumors. Specifically, we address the state of our knowledge regarding chromosomal instability in oral cancer, and discuss various mechanisms that enhance the ability of cancer cells within a tumor to express heterogeneous karyotypes. In addition, we discuss the clinical relevance of factors associated with chromosomal instability as they relate to tumor prognosis and therapy.


Swiss Surgery ◽  
2003 ◽  
Vol 9 (1) ◽  
pp. 3-7 ◽  
Author(s):  
Gervaz ◽  
Bühler ◽  
Scheiwiller ◽  
Morel

The central hypothesis explored in this paper is that colorectal cancer (CRC) is a heterogeneous disease. The initial clue to this heterogeneity was provided by genetic findings; however, embryological and physiological data had previously been gathered, showing that proximal (in relation to the splenic flexure) and distal parts of the colon represent distinct entities. Molecular biologists have identified two distinct pathways, microsatellite instability (MSI) and chromosomal instability (CIN), which are involved in CRC progression. In summary, there may be not one, but two colons and two types of colorectal carcinogenesis, with distinct clinical outcome. The implications for the clinicians are two-folds; 1) tumors originating from the proximal colon have a better prognosis due to a high percentage of MSI-positive lesions; and 2) location of the neoplasm in reference to the splenic flexure should be documented before group stratification in future trials of adjuvant chemotherapy in patients with stage II and III colon cancer.


Sign in / Sign up

Export Citation Format

Share Document