Latest advances on hybrid solar–biomass power plants

Author(s):  
Mohammad Reza Mohaghegh ◽  
Mohammad Heidari ◽  
Syeda Tasnim ◽  
Animesh Dutta ◽  
Shohel Mahmud
POROS ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 121
Author(s):  
Muhammad Ridwan Ridwan ◽  
Noviyanti Nugraha Nugraha

Biomass power plants are electricity generators with alternative energy that utilize organicmaterials, in this case cow dung. The cow dung is then processed to produce syngas. Syngas is used as fuelto turn turbines. In previous studies, a cow manure gasification reactor was designed and manufactured.This reactor is part of a biomass power plant system (PLTBm) which is made separately. The power outputtarget of this PLTBm is 370 kW. The purpose of this study was to examine the performance of the downdraftreactor of cow dung biomass, namely discharge, temperature, and analyze the gas content released by thereactor so that the power that can be generated by the reactor can be obtained. The test results obtained acombustion chamber temperature of 580°C and a discharge of 0.285 m3/s. The composition of the outputgas is acetylene 58.16%, hexane 27.66%, butane 6.38%, and methane 7.8%. From the calculation results,the power generated by the reactor is 342 kW.


Author(s):  
Manutchanok Jongprasithporn ◽  
Adisak Martsri ◽  
Supapat Phuangkaew ◽  
Wannapong Yeamma ◽  
Nantakrit Yodpijit

2018 ◽  
Vol 29 (3) ◽  
pp. 450-456 ◽  
Author(s):  
Tomonori Fukasawa ◽  
Akira Horigome ◽  
Achmad Dwitama Karisma ◽  
Norio Maeda ◽  
An-Ni Huang ◽  
...  

2014 ◽  
Vol 8 (1) ◽  
pp. 100-120 ◽  
Author(s):  
Yun Seng Lim ◽  
Siong Lee Koh ◽  
Stella Morris

Purpose – Biomass waste can be used as fuel in biomass power plants to generate electricity. It is a type of renewable energy widely available in Malaysia because 12 million tons of the biomass waste is produced every year. At present, only 5 per cent of the total biomass waste in Sabah, one of the states in Malaysia, is used to generate electricity for on-site consumption. The remaining 95 per cent of the biomass waste has not been utilized because the transportation cost for shifting the waste from the plantations to the power plants is substantial, hence making the cost of the biomass generated electricity to be high. Therefore, a methodology is developed and presented in this paper to determine the optimum geographic distribution and capacities of the biomass power plants around a region so that the cost of biomass generated electricity can be minimized. The paper aims to discuss these issues. Design/methodology/approach – The methodology is able to identify the potential locations of biomass power plants on any locations on a region taking into account the operation and capital costs of the power plants as well as the cost of connecting the power plants to the national grid. The methodology is programmed using Fortran. Findings – This methodology is applied to Sabah using the real data. The results generated from the methodology show the best locations and capacities of biomass power plants in Sabah. There are 20 locations suitable for biomass power plants. The total capacity of these biomass power plants is 4,996 MW with an annual generation of 35,013 GWh. This is sufficient to meet all the electricity demand in Sabah up to 2030. Originality/value – The methodology is an effective tool to determine the best geographic locations and sizes of the biomass power plants around a region.


Sign in / Sign up

Export Citation Format

Share Document