Solar photovoltaic based dynamic voltage restorer with DC-DC boost converter for mitigating power quality issues in single phase grid

Author(s):  
Suresh Kalichikadu Paramasivam ◽  
Senthil Kumar Ramu ◽  
Senthilkumar Mani ◽  
Suresh Muthusamy ◽  
Suma Christal Mary Sundararajan ◽  
...  

Power Quality (PQ) is becoming an important issue as the increase in electricity use continues. Reduction in the quality of electrical power is due to various kinds of voltage related problems such as voltage sag, voltage swell, short-lived interruptions, harmonic distortions, notches, flickers, spikes and transients. The major power quality problems in single phase system are voltage sag and harmonics. The Mitigation of voltage sag and harmonics in single phase system under the distorted power supply situations was effectively eliminated with Dynamic Voltage Restorer (DVR). The single-phase SRFT (Synchronous Reference Frame Theory) was implemented in the controller design for DVR. DVR will produce required amount of instantaneous voltage to be injected. Designed controller technique will utilize the function of Moving Average Filter (MAF) for getting the fundamental quantity of positive sequence component from the disturbed supply voltage. Experimental results of DVR prove its effectiveness to mitigate voltage sag and harmonics during disturbed power supply condition.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4152
Author(s):  
Ali Moghassemi ◽  
Sanjeevikumar Padmanaban

Power quality is a pressing concern and of the utmost importance for advanced and high-tech equipment in particular, whose performance relies heavily on the supply’s quality. Power quality issues like voltage sags/swells, harmonics, interruptions, etc. are defined as any deviations in current, voltage, or frequency that result in end-use equipment damage or failure. Sensitive loads like medical equipment in hospitals and health clinics, schools, prisons, etc. malfunction for the outages and interruptions, thereby causing substantial economic losses. For enhancing power quality, custom power devices (CPDs) are recommended, among which the Dynamic Voltage Restorer (DVR) is considered as the best and cost-effective solution. DVR is a power electronic-based solution to mitigate and compensate voltage sags. This paper provides a thorough discussion and comprehensive review of DVR topologies based on operations, power converters, control methods, and applications. The review compares the state-of-the-art in works of literature, and comparative study on power quality issues, the DVR principle along with its operation modes, the DVR components, the DVR topologies based on energy storage, the DVR topologies based on single-/three-phase power converters, and the DVR topologies based on control units that have different control processing stages. Furthermore, modified and improved configurations of the DVR, as well as its integration with distributed generations, are described. This work serves as a comprehensive and useful reference for those who have an interest in researching DVRs.


2015 ◽  
Vol 785 ◽  
pp. 409-413
Author(s):  
Eimi Diyana Rosli ◽  
Rijalul Fahmi bin Mustapa ◽  
M.N. Hidayat

Power delivered to consumer from utilities is susceptible to power quality problems. The most common power quality problems are voltage sag. Modern equipment nowadays are prone to problems associated with voltage sag. Such problems can be apprehended by several mitigation methods. This paper will discuss voltage sag mitigation method by eliminating the injection transformer in ordinary Dynamic Voltage Restorer (DVR) and applying Single Phase Matrix Converter (SPMC) in a single phase DVR topologies. The objective of this paper is to investigate the potential mitigation method without the injection transformer in the DVR topology. DVR circuit will be constructed and simulated using MATLAB/SIMULINK software. It is hoped that the result of this work will provide a simpler mitigation technique where existing DVR topology can be constructed with less component that provides unnecessary losses in the DVR itself.IndexTerms—Injection Transformer, DVR, SPMC, MATLAB/SIMULINK.


The integration of renewable energy sources, smart grid systems and extensive usage of power electronic devices, micro-controlled based device, variable speed drives etc. causes a number of power quality issues including electrical harmonics, voltage sag, voltage swell and imbalance creates an impact on the efficiency of electrical equipment. the energy maintaining poor power quality will affect consumers and their utility equipment’s. Power quality means quality of the normal voltage supplied to your facility. Voltage provided should be as close as possible to nominal voltage. The waveform must be pure sine wave free from any harmonics and other disturbances. The growing use of microprocessors and electronic equipment has made us to focus on power quality. Equipment and machinery can be damaged or even fail when subjected to power anomalies. Some of the power quality issues are voltage sag, swell, harmonics, flicker, interruption etc. Among these issues voltage sag is an important issue. This paper investigates about the causes of voltage sag, consequences and its mitigation. Many mitigation devices are available and the most economic effective solution is Dynamic Voltage Restorer (DVR). Simulation has been carried out to evaluate performance. A DVR is simulated in MATLAB/SIMULINK using synchronous reference frame theory.


2014 ◽  
Vol 573 ◽  
pp. 716-721
Author(s):  
S. Rajeshbabu ◽  
B.V. Manikandan

Renewable energy sources provide the additional/satisfy the power to the consumer through power electronics interfaces and integrated with the grid. In grid integration power quality is one of the important parameter that need to be paying more attention. This proposed work focuses on power quality issues in a grid connected renewable energy system. Power quality issues will arises due to many factors here with the by introducing a fault condition in a grid connected renewable energy system the measurements were made at the point of common coupling and the mitigation is done with the help of a dynamic voltage restorer. The dynamic voltage restorer is a device which offers series compensation activated by neural network based controller. The sag improvement and the total harmonic assessment were made at the point of common coupling. Keywords: Neural network, Point of common coupling, Renewable energy source, Power quality, Dynamic voltage restorer ,electric grid.


2016 ◽  
Vol 17 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Tejinder Singh Saggu ◽  
Lakhwinder Singh

Abstract Induction furnaces are used in wide quantity under different capacities for annual production of around 25 million tons of iron and steel in India. It plays a vital role in various manufacturing processes around the world for melting different types of metal scraps i. e. Copper, Cast Iron, Aluminium, Steel, Brass, Bronze, Silicon, Gold, Silver etc. which are further used in many other industrial applications. The induction furnace causes a huge disturbance to the utility and nearby consumers during its operation due to its non-linear characteristics. This is a serious phenomenon responsible for power quality degradation in the power system. This paper presents methodology to improve the power quality degradation caused by induction furnace using Dynamic Voltage Restorer (DVR) which is a type of custom power device. The real time data has been taken from an industry employing induction furnace for production of ingots from scrap material. The experimental readings are measured using power quality analyser equipment. The simulation of whole plant is done by analysing this same data and the simulation results are compared with actual onsite results. Then, solution methodology using DVR is presented which revealed that the implementation of DVR is an effective solution for voltage sag mitigation and harmonics improvement in induction furnace.


Sign in / Sign up

Export Citation Format

Share Document