Performance investigation of laminar flow through tube fitted with hyperbolic-cut twisted tape inserts

Author(s):  
Abhijit Rajan ◽  
Laljee Prasad
Author(s):  
Sujoy Kumar Saha ◽  
Bikash Kumar Barman ◽  
Soumitra Banerjee

The experimental friction factor and Nusselt number data for laminar flow through a circular duct having wire coil inserts and fitted with center-cleared twisted tape have been presented. Predictive friction factor and Nusselt number correlations have also been presented. The thermohydraulic performance has been evaluated. The major findings of this experimental investigation are the center-cleared twisted tapes in combination with wire coil inserts perform better than the individual enhancement technique acting alone for laminar flow through a circular duct up to a certain amount of center-clearance.


2006 ◽  
Vol 128 (10) ◽  
pp. 1070-1080 ◽  
Author(s):  
Debashis Pramanik ◽  
Sujoy K. Saha

The heat transfer and the pressure drop characteristics of laminar flow of viscous oil through rectangular and square ducts with internal transverse rib turbulators on two opposite surfaces of the ducts and fitted with twisted tapes have been studied experimentally. The tapes have been full length, short length, and regularly spaced types. The transverse ribs in combination with full-length twisted tapes have been found to perform better than either ribs or twisted tapes acting alone. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow was periodically fully developed in the regularly spaced twisted-tape elements case and decaying swirl flow in the short-length twisted tapes case. The flow characteristics are governed by twist ratio, space ratio, and length of twisted tape, Reynolds number, Prandtl number, rod-to-tube diameter ratio, duct aspect ratio, rib height, and rib spacing. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of both constant pumping power and constant heat duty, the regularly spaced twisted-tape elements in specific cases perform marginally better than their full-length counterparts. However, the short-length twisted-tape performance is worse than the full-length twisted tapes. Therefore, full-length twisted tapes and regularly spaced twisted-tape elements in combination with transverse ribs are recommended for laminar flows. However, the short-length twisted tapes are not recommended.


Fluids ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 188
Author(s):  
M. Ziad Saghir ◽  
Ayman Bayomy ◽  
Md Abdur Rahman

Heat enhancement and heat removal have been the subject of considerable research in the energy system field. Flow-through channels and pipes have received much attention from engineers involved in heat exchanger design and construction. The use of insert tape is one of many ways to mix fluids, even in a laminar flow regime. The present study focused on the use of different twisted tapes with different pitch-to-pitch distances and lengths to determine the optimum design for the best possible performance energy coefficient. The results revealed that twisted tape of one revolution represented the optimal design configuration and provided the largest Nusselt number. The length of the tape played a major role in the pressure drop. The results revealed that the insertion of a shorter twisted tape can create mixing while minimizing the changes in the pressure drop. In particular, the best performance evaluation criterion is found for a short tape located towards the exit of the channel. The highest performance energy coefficient was obtained for the half-twisted tape for a Reynolds number varying between 200 and 600.


Sign in / Sign up

Export Citation Format

Share Document