Soil loss estimation and empirical relationships for sediment delivery ratios of European river catchments

2015 ◽  
Vol 13 (2) ◽  
pp. 179-202 ◽  
Author(s):  
Andreas Gericke
2019 ◽  
Vol 7 (2) ◽  
pp. 100-111
Author(s):  
Miskar Maini ◽  
Junita Eka Susanti

Standar permintaan engineering pesawat agar desain bangunan infrastruktur di area Air Strip Runway 2600 yang ada dapat mempunyai fungsi lain. Sedangkan kondisi lain sangat menentukan keselamatan karena lahan di sekitar Air Strip Runway 2600 Bandara Depati Amir (PGK) jika tidak ditutupi vegetasi seperti rumput, kondisi lain lahan yang belum ditutupi vegetasi di sekitar Air Strip Runway 2600 berpotensi akan mengalami erosi lahan, kemudian hasil erosi lahan ini akan terbawa oleh aliran air sehingga akan masuk ke saluran drainase yang akan menyebabkan sedimentasi pada saluran drainase tersebut, akhirnya akan berkurang efektifitas kinerja saluran drainase tersebut. Metode yang digunakan untuk memprediksi laju rata-rata erosi di area Air Strip Runway 2600 dengan memperhitungkan faktor erosivitas hujan, erodibilitas tanah, kemiringan lereng atau panjang lereng, pengelolaan tanaman dan konservasi tanah, yang masing masing tata guna lahan tersebut mengacu pada Masterplan Ultimate Bandara Depati Amir (PGK). Perhitungan dilakukan menggunakan persamaan USLE (Universal Soil Loss Equation) yang dikembangkan oleh Wischmeier dan Smith (1965, 1978), kemudian Sediment Delivery Ratio (SDR) dan Sediment Yield.Hasil penelitian ini, prediksi laju erosi permukaan pada area Air Strip Runway 2600 Bandara Depati Amir (PGK) tahun pertama yang mencapai 5,60 mm/tahun atau 100,76 Ton/Ha/tahun, laju erosi tahun kedua mencapai 3,38 mm/tahun atau 60,84 Ton/Ha/tahun dapat diklasifikasikan ke dalam kelas bahaya erosi sedang (kelas III) dan nilai SDR adalah sebesar 56,3%, nilai sediment yield (SR) pada tahun pertama sebesar 5.887,59 Ton/Tahun, pada tahun kedua ketika rumput pada area Air Strip telah tumbuh dengan sempurna terjadi penurunan hasil sediment yield yaitu nilai SR sebesar 3.554,85 Ton/Tahun.


2015 ◽  
Vol 19 (9) ◽  
pp. 3845-3856 ◽  
Author(s):  
F. Todisco ◽  
L. Brocca ◽  
L. F. Termite ◽  
W. Wagner

Abstract. The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008–2013. The results showed that including soil moisture observations in the event rainfall–runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha−1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.


2007 ◽  
Vol 64 (4) ◽  
pp. 336-343 ◽  
Author(s):  
Alexandre Marco da Silva ◽  
Lilian Casatti ◽  
Clayton Alcarde Alvares ◽  
Aline Maria Leite ◽  
Luiz Antonio Martinelli ◽  
...  

Soil loss expectation and possible relationships among soil erosion, riparian vegetation and water quality were studied in the São José dos Dourados River basin, State of São Paulo, Brazil. Through Geographic Information System (GIS) resources and technology, Soil Loss Expectation (SLE) data obtained using the Universal Soil Loss Equation (USLE) model were analyzed. For the whole catchment area and for the 30 m buffer strips of the streams of 22 randomly selected catchments, the predominant land use and habitat quality were studied. Owing mainly to the high soil erodibility, the river basin is highly susceptible to erosive processes. Habitat quality analyses revealed that the superficial water from the catchments is not chemically impacted but suffers physical damage. A high chemical purity is observed since there are no urban areas along the catchments. The water is physically poor because of high rates of sediment delivery and the almost nonexistence of riparian vegetation.


2003 ◽  
Vol 6 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Gert Verstraeten ◽  
Jean Poesen ◽  
Gerard Govers ◽  
Katleen Gillijns ◽  
Anton Van Rompaey ◽  
...  

2019 ◽  
Author(s):  
Abreham Berta Aneseyee

Abstract Background: Information on soil loss and sediment export is essential to identify hotspots of soil erosion for conservation interventions in a given watershed. This study aims at investigating the dynamic of soil loss and sediment export associated with land use/land cover change and identifies soil loss hotspot areas in Winike watershed of Omo-gibe basin of Ethiopia. Spatial data collected from satellite images, topographic maps, meteorological and soil data were analyzed. Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) of sediment delivery ratio (SDR) model was used based on analysis of land use/land cover maps and RUSLE factors. Result: The results showed that total soil loss increased from 774.86 thousand tons in 1988 to 951.21 thousand tons in 2018 while the corresponding sediment export increased by 3.85 thousand tons in the same period. These were subsequently investigated in each land-use type. Cultivated fields generated the highest soil erosion rate, which increased by 10.02 t/ha/year in 1988 to 43.48 t/ha/year in 2018. This corresponds with the expansion of the cultivated area that increased from 44.95 thousand ha in 1988 to 59.79 thousand ha in 2018. This is logical as the correlation between soil loss and sediment delivery and expansion of cultivated area is highly significant (p<0.01). Sub-watershed six (SW-6) generated the highest soil loss (62.77 t/ha/year) and sediment export 16.69 t/ha/year, followed by Sub-watershed ten (SW-10) that are situated in the upland plateau. Conversely, the lower reaches of the watershed are under dense vegetation cover and experiencing less erosion. Conclusion: Overall, the changes in land use/land cover affect significantly the soil erosion and sediment export dynamism. This research is used to identify an area to prioritize the watershed for immediate management practices. Thus, land use policy measures need to be enforced to protect the hydropower generation dams at downstream and the ecosystem at the watershed.


Sign in / Sign up

Export Citation Format

Share Document