Enteric pathogens in flood-related waters in urban areas of the Vietnamese Mekong Delta: a case study of Ninh Kieu district, Can Tho city

2019 ◽  
Vol 16 (9) ◽  
pp. 634-641
Author(s):  
Thi Thao Nguyen Huynh ◽  
Hong Quan Nguyen ◽  
Phat Voong Vinh ◽  
Stephen Baker ◽  
Assela Pathirana
2015 ◽  
Vol 3 (8) ◽  
pp. 4967-5013 ◽  
Author(s):  
H. Apel ◽  
O. M. Trepat ◽  
N. N. Hung ◽  
D. T. Chinh ◽  
B. Merz ◽  
...  

Abstract. Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards – fluvial, pluvial and combined – were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and ways for their usage in flood risk management are outlined.


Author(s):  
Tran Thi Minh Hoa ◽  
Chu Khanh Linh

In the master plan on socio-economic development of Vietnam to 2020, with a vision to 2030, the Mekong Delta is identified as a key economic region, a major tourism and service center of the whole country. Several affairs, such as environmental security, the economical use of resources, ecological environment protection, and the social environment, are mentioned and play an important role in the orientation of sustainable socio-economic and tourism development. Based on the published research results and collected data during the field survey in Can Tho, this discourse will analyze deeply the impacts of tourism on environmental security in Can Tho city. On that basis, the discourse will suggest a number of proposals for other relevant departments in order to develop tourism according to the principles of ensuring environmental security in Can Tho city. Thanks to that, we can draw experience lessons for the whole Mekong Delta.


2016 ◽  
Vol 16 (4) ◽  
pp. 941-961 ◽  
Author(s):  
Heiko Apel ◽  
Oriol Martínez Trepat ◽  
Nguyen Nghia Hung ◽  
Do Thi Chinh ◽  
Bruno Merz ◽  
...  

Abstract. Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either a fluvial or pluvial flood hazard, studies of a combined fluvial and pluvial flood hazard are hardly available. Thus this study aims to analyse a fluvial and a pluvial flood hazard individually, but also to develop a method for the analysis of a combined pluvial and fluvial flood hazard. This combined fluvial–pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as an example. In this tropical environment the annual monsoon triggered floods of the Mekong River, which can coincide with heavy local convective precipitation events, causing both fluvial and pluvial flooding at the same time. The fluvial flood hazard was estimated with a copula-based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. The pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data and a stochastic rainstorm generator. Inundation for all flood scenarios was simulated by a 2-dimensional hydrodynamic model implemented on a Graphics Processing Unit (GPU) for time-efficient flood propagation modelling. The combined fluvial–pluvial flood scenarios were derived by adding rainstorms to the fluvial flood events during the highest fluvial water levels. The probabilities of occurrence of the combined events were determined assuming independence of the two flood types and taking the seasonality and probability of coincidence into account. All hazards – fluvial, pluvial and combined – were accompanied by an uncertainty estimation taking into account the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and their usage in flood risk management are outlined.


Author(s):  
Tue Nguyen Dang

This research examines the factors affecting the financial literacy of Vietnamese adults. Using a sample of 266 observations of adults in 2 big cities in Vietnam (Hanoi and Vinh in Nghe An Province), the author evaluates the literacy level of adults in these urban areas. The financial literacy of the interviewed people is low. The multiple regression results show that lower financial literacy levels associate with higher age and married status and higher financial literacy levels associate with higher education, more family members, the person making financial decisions and the person attending a useful financial course. This research also explores the association between financial literacy and financial behaviors of individuals employing logistic models. It is found that higher financial literacy associates with less probability of overspending and higher probability of saving money and careful spending. Higher financial literacy is also found to associate with higher probability of opening a savings account and making various investments. 


Author(s):  
Ericka A. Albaugh

This chapter examines how civil war can influence the spread of language. Specifically, it takes Sierra Leone as a case study to demonstrate how Krio grew from being primarily a language of urban areas in the 1960s to one spoken by most of the population in the 2000s. While some of this was due to “normal” factors such as population movement and growing urbanization, the civil war from 1991 to 2002 certainly catalyzed the process of language spread in the 1990s. Using census documents and surveys, the chapter tests the hypothesis at the national, regional, and individual levels. The spread of a language has political consequences, as it allows for citizen participation in the political process. It is an example of political scientists’ approach to uncovering the mechanisms for and evidence of language movement in Africa.


2016 ◽  
Vol 10 (1) ◽  
pp. 99-117 ◽  
Author(s):  
Alberto De Marco ◽  
Giulio Mangano ◽  
Fania Valeria Michelucci ◽  
Giovanni Zenezini

Purpose – The purpose of this paper is to suggest the usage of the project finance (PF) scheme as a suitable mechanism to fund energy efficiency projects at the urban scale and present its advantages and adoption barriers. Design/methodology/approach – A case study is developed to renew the traffic lighting system of an Italian town via replacement of the old lamps with new light-emitting diode (LED) technology. Several partners are involved in the case project to construct a viable PF arrangement. Findings – The case study presents the viability of the proposed PF scheme that provides for acceptable financial returns and bankability. However, it also shows that the need for short concession periods may call for a public contribution to the initial funding to make the project more attractive to private investors. Practical implications – This case study is a useful guideline for governments and promoters to using the PF arrangement to fund energy efficiency investments in urban settings. It helps designing an appropriate PF scheme and understanding the advantages of PF to reduce risk and, consequently, increase the debt leverage and profitability of energy efficiency projects. Originality/value – This paper contributes to bridging the gap about the lack of works addressing the implementation of the PF mechanism in the energy efficiency sector in urban areas. The importance of this paper is also associated with the shortage of traditional public finance faced by many cities that forces to seek for alternate forms of financing.


2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Lennart Adenaw ◽  
Markus Lienkamp

In order to electrify the transport sector, scores of charging stations are needed to incentivize people to buy electric vehicles. In urban areas with a high charging demand and little space, decision-makers are in need of planning tools that enable them to efficiently allocate financial and organizational resources to the promotion of electromobility. As with many other city planning tasks, simulations foster successful decision-making. This article presents a novel agent-based simulation framework for urban electromobility aimed at the analysis of charging station utilization and user behavior. The approach presented here employs a novel co-evolutionary learning model for adaptive charging behavior. The simulation framework is tested and verified by means of a case study conducted in the city of Munich. The case study shows that the presented approach realistically reproduces charging behavior and spatio-temporal charger utilization.


Sign in / Sign up

Export Citation Format

Share Document