On efficient CUSUM-type location control charts using auxiliary information

2017 ◽  
Vol 15 (1) ◽  
pp. 87-105 ◽  
Author(s):  
Ridwan A. Sanusi ◽  
Nasir Abbas ◽  
Muhammad Riaz
2020 ◽  
Vol 36 (6) ◽  
pp. 1949-1968 ◽  
Author(s):  
Syed Masroor Anwar ◽  
Muhammad Aslam ◽  
Muhammad Riaz ◽  
Babar Zaman

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Hina Khan ◽  
Saleh Farooq ◽  
Muhammad Aslam ◽  
Masood Amjad Khan

This study proposes EWMA-type control charts by considering some auxiliary information. The ratio estimation technique for the mean with ranked set sampling design is used in designing the control structure of the proposed charts. We have developed EWMA control charts using two exponential ratio-type estimators based on ranked set sampling for the process mean to obtain specific ARLs, being suitable when small process shifts are of interest.


2019 ◽  
Vol 42 (6) ◽  
pp. 1151-1165 ◽  
Author(s):  
Adamu A Umar ◽  
Michael BC Khoo ◽  
Sajal Saha ◽  
Abdul Haq

In recent years, the suitable use of auxiliary information technique in control charts has shown an improved run length performance compared to control charts that do not have this feature. This article proposes a combined variable sampling interval (VSI) and double sampling (DS) chart using the auxiliary information (AI) technique (called VSIDS-AI chart, hereafter). The plotting-statistic of the VSIDS-AI chart requires information from both the study and auxiliary variables to efficiently detect process mean shifts. The charting statistics, optimal design and performance assessment of the VSIDS-AI chart are discussed. The steady-state average time to signal (ssATS) and steady-state expected average time to signal (ssEATS) are considered as the performance measures. The ssATS and ssEATS results of the VSIDS-AI chart are compared with those of the DS AI, variable sample size and sampling interval AI, exponentially weighted moving average AI (EWMA-AI) and run sum AI (RS-AI) charts. The results of comparison show that the VSIDS-AI chart outperforms the charts under comparison for all shift sizes, except the EWMA-AI and RS-AI charts for small shift sizes. An illustrative example is provided to demonstrate the implementation of the VSIDS-AI chart.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 706 ◽  
Author(s):  
Shahid Hussain ◽  
Sun Mei ◽  
Muhammad Riaz ◽  
Saddam Akber Abbasi

A control chart is often used to monitor the industrial or services processes to improve the quality of the products. Mostly, the monitoring of location parameters, both in Phase I and Phase II, is done using a mean control chart with the assumption that the process is free from outliers or the estimators are correctly estimated from in-control samples. Generally, there are question marks about such kind of narratives. The performance of the mean chart is highly affected in the presence of outliers. Therefore, the median chart is an attractive alternative to the mean chart in this situation. The control charts are usually implemented in two phases: Phase I (retrospective) and Phase II (prospective/monitoring). The efficiency of any control chart in Phase II depends on the accuracy of control limits obtained from Phase I. The current study focuses on the Phase I analysis of location parameters using median control charts. We examined the performance of different auxiliary information-based median control charts and compared the results with the usual median chart. Standardized variance and relative efficacy are used as performance measures to evaluate the efficiency of median estimators. Moreover, the probability to signal measure is used to evaluate the performance of proposed control charts to detect any potential changes in the process. The results revealed that the proposed auxiliary information based median control charts perform better in Phase I analysis. In addition, a practical illustration of an industrial scenario demonstrated the significance of the proposed control charts, in which the monitoring of concrete compressive strength is emphasized.


Technologies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 69
Author(s):  
Muhammad Mughal ◽  
Muhammad Azam ◽  
Muhammad Aslam

Among the Statistical Process Control (SPC) techniques, control charts are considered to be high weight-age due to their effectiveness in process variation. As the Shewhart’s charts are not that active in monitoring small and moderate process variations, the statisticians have been making efforts to improve the performance of the control chart by introducing several techniques within the tool. These techniques consist of experimenting with different estimators, different sampling selection techniques, and mixed methodologies. The proposed chart is one of the examples of a mixed chart technique that has shown its efficiency in monitoring small variations better than any of the existing techniques in the specific situation of auxiliary information. To show and compare its performance, average run length (ARL) tables and ARL curves have been presented in the article. An industrial example has also been included to show the practical application of the proposed chart in a real scenario.


Author(s):  
Sadia Tariq ◽  
Muhammad Noor-ul-Amin ◽  
Muhammad Hanif ◽  
Chi-Hyuck Jun 

Statistical process control is an important tool for maintaining the quality of a production process. Several control charts are available to monitor changes in process parameters. In this study, a control chart for the process mean is proposed. For this purpose, an auxiliary variable is used in the form of a regression estimator under the configuration of the hybrid exponentially weighted moving average (HEWMA) control chart. The proposed chart is evaluated by conducting a simulation study. The results showed that the proposed chart is sensitive with respect to the HEWMA chart. A real-life application is also presented to demonstrate the performance of the proposed control chart.


Sign in / Sign up

Export Citation Format

Share Document