scholarly journals Significant reduction of radiation dose and DNA damage in 18F- FDG whole-body PET/CT study without compromising diagnostic image quality

2021 ◽  
Vol 14 (1) ◽  
pp. 358-368
Author(s):  
Amit Nautiyal ◽  
Tanmoy Mondal ◽  
Manu Manii ◽  
Aruna Kaushik ◽  
Alpana Goel ◽  
...  
2016 ◽  
Vol 25 (4) ◽  
pp. 230-234
Author(s):  
Wai-Yung Yu ◽  
Thye Sin Ho ◽  
Henry Ko ◽  
Wai-Yee Chan ◽  
Serene Ong ◽  
...  

Introduction: The use of computed tomography (CT) imaging as a diagnostic modality is increasing rapidly and CT is the dominant contributor to diagnostic medical radiation exposure. The aim of this project was to reduce the effective radiation dose to patients undergoing cranial CT examination, while maintaining diagnostic image quality. Methods: Data from a total of 1003, 132 and 27 patients were examined for three protocols: CT head, CT angiography (CTA), and CT perfusion (CTP), respectively. Following installation of adaptive iterative dose reduction (AIDR) 3D software, tube current was lowered in consecutive cycles, in a stepwise manner and effective radiation doses measured at each step. Results: Baseline effective radiation doses for CT head, CTA and CTP were 1.80, 3.60 and 3.96 mSv, at currents of 300, 280 and 130–150 mA, respectively. Using AIDR 3D and final reduced currents of 160, 190 and 70–100 mA for CT head, CTA and CTP gave effective doses of 1.29, 3.18 and 2.76 mSv, respectively. Conclusion: We demonstrated that satisfactory reductions in the effective radiation dose for CT head (28.3%), CTA (11.6%) and CTP (30.1%) can be achieved without sacrificing diagnostic image quality. We have also shown that iterative reconstruction techniques such as AIDR 3D can be effectively used to help reduce effective radiation dose. The dose reductions were performed within a short period and can be easily achievable, even in busy departments.


2007 ◽  
Vol 31 (3) ◽  
pp. 178-184 ◽  
Author(s):  
Elisa Busi Rizzi ◽  
Vincenzo Schininà ◽  
Francesco Paolo Gentile ◽  
Corrado Bibbolino

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
B Foldyna ◽  
J Uhlig ◽  
T Mayrhofer ◽  
L Natale ◽  
R Vliegenthart ◽  
...  

Abstract Background/Introduction The recently updated 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes endorse the use of coronary computed tomography angiography (CCTA) for exclusion of obstructive coronary artery disease in patients with a low clinical likelihood (Class I, LOE B). Higher demand for CCTA requires broad availability, inevitably involving smaller healthcare providers, such as non-academic hospitals and private practices. Nevertheless, most published data on CCTA image quality and safety rely on exams performed in high-volume academic centers, and little is known about CCTA in non-academic settings. Purpose To investigate the utilization of CCTA across Europe over the last decade, focusing on differences between academic and non-academic centers. Methods We included patients with stable chest pain and suspected coronary artery disease (CAD) who received CCTA and were included in the European Society of Cardiovascular Radiology MR/CT registry 01/2010–01/2020. We compared CT equipment, image quality, radiation dose, the incidence of periprocedural adverse events, patient characteristics, and CCTA findings between academic (high volume university hospitals) and non-academic centers (non-academic hospitals and private practices). Results Overall, 64,317 patients (41.2% women; age 60±13 years) from 212 sites across 19 European countries were included. Academic centers submitted most cases in 2010—2014 (51.6%), whereas non-academic centers accounted for 71.3% of records in 2015–2020. While non-academic centers used less advanced technology, radiation dose remained low (4.54 [interquartile range (IQR) 2.28–6.76] mSv) with a 30% decline of high-dose scans (>7 mSv) over time. Diagnostic image quality was reported in 97.7% of cases, and the rate of acute scan-related events was low (0.4%) (Figure 1). From 2010–2014 to 2015–2020, CCTA nearly doubled in patients with low to intermediate pretest-probability, women >50, and 40–60 years old men (Figure 2). CAD presence and extent decreased slightly over time (prevalence: 2010–2014: 41.5% vs. 2015–2020: 40.6%), (multi-vessel disease in those with CAD: 2010–2014: 61.9% vs. 2015–2020: 55.9%; all p<0.01). Conclusion CCTA expands rapidly to non-academic centers across Europe, increasing availability while maintaining relatively low radiation dose, high diagnostic image quality, and safety. Broad availability of high-quality CCTA is essential for a successfully implementation of the recently updated guidelines for the diagnosis and management of chronic coronary syndromes. FUNDunding Acknowledgement Type of funding sources: None. Changes in CCTA utilization Changes in patient characteristics


2017 ◽  
Vol 90 (1071) ◽  
pp. 20160660
Author(s):  
Anuja Joshi ◽  
Amber J Gislason-Lee ◽  
Claire Keeble ◽  
Uduvil M Sivananthan ◽  
Andrew G Davies

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Faisal Khosa ◽  
Atif Khan ◽  
Khurram Nasir ◽  
Waqas Shuaib ◽  
Matthew Budoff ◽  
...  

Purpose. To compare radiation dose and image quality using predefined narrow phase window versus complete phase window with dose modulation during R-R using 320-row MDCTA.Methods. 114 patients underwent coronary CTA study using 320-row MDCT scanner. 87 patients with mean age (61 + 13 years), mean BMI (29 + 6), and mean heart rate (HR) (58 + 7 bpm) were imaged at predefined 66–80% R-R interval and then reconstructed at 75% while 27 patients with mean age (63 + 16 years), mean BMI (28 + 5), and mean HR (57 + 7 bpm) were scanned throughout the complete R-R interval with tube current modulation. The effective dose (ED) was calculated from dose length product (DLP) and conversionk(0.014 mSv/mGy/cm). Image quality was assessed using a three-point ordinal scale (1 = excellent, 2 = good, and 3 = nondiagnostic).Results. Both groups were statistically similar to each other with reference of HR (P=0.59), BMI (P=0.17), and tube current mAs (P=0.68). The median radiation dose was significantly higher in those scanned with complete R-R phase window versus narrow phase window (P<0.0001). Independently of patient and scan parameters, increased phase window was associated with higher radiation dose (P<0.001). Image quality was better among those scanned with narrow phase window versus complete phase window (P<0.0001).Conclusion. Our study supports that good HR control and predefined narrow window acquisition result in lower radiation dose without compromising diagnostic image quality for coronary disease evaluation.


2014 ◽  
Vol 41 (9) ◽  
pp. 092505 ◽  
Author(s):  
Ching-Ching Yang ◽  
Shu-Hsin Liu ◽  
Greta S. P. Mok ◽  
Tung-Hsin Wu

2018 ◽  
Vol 33 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Yusuke Inoue ◽  
Kazunori Nagahara ◽  
Yuri Inoki ◽  
Toshimasa Hara ◽  
Hiroki Miyatake

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Akshay S. Chaudhari ◽  
Erik Mittra ◽  
Guido A. Davidzon ◽  
Praveen Gulaka ◽  
Harsh Gandhi ◽  
...  

AbstractMore widespread use of positron emission tomography (PET) imaging is limited by its high cost and radiation dose. Reductions in PET scan time or radiotracer dosage typically degrade diagnostic image quality (DIQ). Deep-learning-based reconstruction may improve DIQ, but such methods have not been clinically evaluated in a realistic multicenter, multivendor environment. In this study, we evaluated the performance and generalizability of a deep-learning-based image-quality enhancement algorithm applied to fourfold reduced-count whole-body PET in a realistic clinical oncologic imaging environment with multiple blinded readers, institutions, and scanner types. We demonstrate that the low-count-enhanced scans were noninferior to the standard scans in DIQ (p < 0.05) and overall diagnostic confidence (p < 0.001) independent of the underlying PET scanner used. Lesion detection for the low-count-enhanced scans had a high patient-level sensitivity of 0.94 (0.83–0.99) and specificity of 0.98 (0.95–0.99). Interscan kappa agreement of 0.85 was comparable to intrareader (0.88) and pairwise inter-reader agreements (maximum of 0.72). SUV quantification was comparable in the reference regions and lesions (lowest p-value=0.59) and had high correlation (lowest CCC = 0.94). Thus, we demonstrated that deep learning can be used to restore diagnostic image quality and maintain SUV accuracy for fourfold reduced-count PET scans, with interscan variations in lesion depiction, lower than intra- and interreader variations. This method generalized to an external validation set of clinical patients from multiple institutions and scanner types. Overall, this method may enable either dose or exam-duration reduction, increasing safety and lowering the cost of PET imaging.


Sign in / Sign up

Export Citation Format

Share Document