scholarly journals Rising utilization of coronary CT angiography across Europe over the last decade: insights from a large prospective European registry

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
B Foldyna ◽  
J Uhlig ◽  
T Mayrhofer ◽  
L Natale ◽  
R Vliegenthart ◽  
...  

Abstract Background/Introduction The recently updated 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes endorse the use of coronary computed tomography angiography (CCTA) for exclusion of obstructive coronary artery disease in patients with a low clinical likelihood (Class I, LOE B). Higher demand for CCTA requires broad availability, inevitably involving smaller healthcare providers, such as non-academic hospitals and private practices. Nevertheless, most published data on CCTA image quality and safety rely on exams performed in high-volume academic centers, and little is known about CCTA in non-academic settings. Purpose To investigate the utilization of CCTA across Europe over the last decade, focusing on differences between academic and non-academic centers. Methods We included patients with stable chest pain and suspected coronary artery disease (CAD) who received CCTA and were included in the European Society of Cardiovascular Radiology MR/CT registry 01/2010–01/2020. We compared CT equipment, image quality, radiation dose, the incidence of periprocedural adverse events, patient characteristics, and CCTA findings between academic (high volume university hospitals) and non-academic centers (non-academic hospitals and private practices). Results Overall, 64,317 patients (41.2% women; age 60±13 years) from 212 sites across 19 European countries were included. Academic centers submitted most cases in 2010—2014 (51.6%), whereas non-academic centers accounted for 71.3% of records in 2015–2020. While non-academic centers used less advanced technology, radiation dose remained low (4.54 [interquartile range (IQR) 2.28–6.76] mSv) with a 30% decline of high-dose scans (>7 mSv) over time. Diagnostic image quality was reported in 97.7% of cases, and the rate of acute scan-related events was low (0.4%) (Figure 1). From 2010–2014 to 2015–2020, CCTA nearly doubled in patients with low to intermediate pretest-probability, women >50, and 40–60 years old men (Figure 2). CAD presence and extent decreased slightly over time (prevalence: 2010–2014: 41.5% vs. 2015–2020: 40.6%), (multi-vessel disease in those with CAD: 2010–2014: 61.9% vs. 2015–2020: 55.9%; all p<0.01). Conclusion CCTA expands rapidly to non-academic centers across Europe, increasing availability while maintaining relatively low radiation dose, high diagnostic image quality, and safety. Broad availability of high-quality CCTA is essential for a successfully implementation of the recently updated guidelines for the diagnosis and management of chronic coronary syndromes. FUNDunding Acknowledgement Type of funding sources: None. Changes in CCTA utilization Changes in patient characteristics

2016 ◽  
Vol 25 (4) ◽  
pp. 230-234
Author(s):  
Wai-Yung Yu ◽  
Thye Sin Ho ◽  
Henry Ko ◽  
Wai-Yee Chan ◽  
Serene Ong ◽  
...  

Introduction: The use of computed tomography (CT) imaging as a diagnostic modality is increasing rapidly and CT is the dominant contributor to diagnostic medical radiation exposure. The aim of this project was to reduce the effective radiation dose to patients undergoing cranial CT examination, while maintaining diagnostic image quality. Methods: Data from a total of 1003, 132 and 27 patients were examined for three protocols: CT head, CT angiography (CTA), and CT perfusion (CTP), respectively. Following installation of adaptive iterative dose reduction (AIDR) 3D software, tube current was lowered in consecutive cycles, in a stepwise manner and effective radiation doses measured at each step. Results: Baseline effective radiation doses for CT head, CTA and CTP were 1.80, 3.60 and 3.96 mSv, at currents of 300, 280 and 130–150 mA, respectively. Using AIDR 3D and final reduced currents of 160, 190 and 70–100 mA for CT head, CTA and CTP gave effective doses of 1.29, 3.18 and 2.76 mSv, respectively. Conclusion: We demonstrated that satisfactory reductions in the effective radiation dose for CT head (28.3%), CTA (11.6%) and CTP (30.1%) can be achieved without sacrificing diagnostic image quality. We have also shown that iterative reconstruction techniques such as AIDR 3D can be effectively used to help reduce effective radiation dose. The dose reductions were performed within a short period and can be easily achievable, even in busy departments.


2007 ◽  
Vol 31 (3) ◽  
pp. 178-184 ◽  
Author(s):  
Elisa Busi Rizzi ◽  
Vincenzo Schininà ◽  
Francesco Paolo Gentile ◽  
Corrado Bibbolino

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Reza Hajhosseiny ◽  
Imran Rashid ◽  
Aurélien Bustin ◽  
Camila Munoz ◽  
Gastao Cruz ◽  
...  

Abstract Background The widespread clinical application of coronary cardiovascular magnetic resonance (CMR) angiography (CMRA) for the assessment of coronary artery disease (CAD) remains limited due to low scan efficiency leading to prolonged and unpredictable acquisition times; low spatial-resolution; and residual respiratory motion artefacts resulting in limited image quality. To overcome these limitations, we have integrated highly undersampled acquisitions with image-based navigators and non-rigid motion correction to enable high resolution (sub-1 mm3) free-breathing, contrast-free 3D whole-heart coronary CMRA with 100% respiratory scan efficiency in a clinically feasible and predictable acquisition time. Objectives To evaluate the diagnostic performance of this coronary CMRA framework against coronary computed tomography angiography (CTA) in patients with suspected CAD. Methods Consecutive patients (n = 50) with suspected CAD were examined on a 1.5T CMR scanner. We compared the diagnostic accuracy of coronary CMRA against coronary CTA for detecting a ≥ 50% reduction in luminal diameter. Results The 50 recruited patients (55 ± 9 years, 33 male) completed coronary CMRA in 10.7 ± 1.4 min. Twelve (24%) had significant CAD on coronary CTA. Coronary CMRA obtained diagnostic image quality in 95% of all, 97% of proximal, 97% of middle and 90% of distal coronary segments. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were: per patient (100%, 74%, 55%, 100% and 80%), per vessel (81%, 88%, 46%, 97% and 88%) and per segment (76%, 95%, 44%, 99% and 94%) respectively. Conclusions The high diagnostic image quality and diagnostic performance of coronary CMRA compared against coronary CTA demonstrates the potential of coronary CMRA as a robust and safe non-invasive alternative for excluding significant disease in patients at low-intermediate risk of CAD.


2017 ◽  
Vol 90 (1071) ◽  
pp. 20160660
Author(s):  
Anuja Joshi ◽  
Amber J Gislason-Lee ◽  
Claire Keeble ◽  
Uduvil M Sivananthan ◽  
Andrew G Davies

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Faisal Khosa ◽  
Atif Khan ◽  
Khurram Nasir ◽  
Waqas Shuaib ◽  
Matthew Budoff ◽  
...  

Purpose. To compare radiation dose and image quality using predefined narrow phase window versus complete phase window with dose modulation during R-R using 320-row MDCTA.Methods. 114 patients underwent coronary CTA study using 320-row MDCT scanner. 87 patients with mean age (61 + 13 years), mean BMI (29 + 6), and mean heart rate (HR) (58 + 7 bpm) were imaged at predefined 66–80% R-R interval and then reconstructed at 75% while 27 patients with mean age (63 + 16 years), mean BMI (28 + 5), and mean HR (57 + 7 bpm) were scanned throughout the complete R-R interval with tube current modulation. The effective dose (ED) was calculated from dose length product (DLP) and conversionk(0.014 mSv/mGy/cm). Image quality was assessed using a three-point ordinal scale (1 = excellent, 2 = good, and 3 = nondiagnostic).Results. Both groups were statistically similar to each other with reference of HR (P=0.59), BMI (P=0.17), and tube current mAs (P=0.68). The median radiation dose was significantly higher in those scanned with complete R-R phase window versus narrow phase window (P<0.0001). Independently of patient and scan parameters, increased phase window was associated with higher radiation dose (P<0.001). Image quality was better among those scanned with narrow phase window versus complete phase window (P<0.0001).Conclusion. Our study supports that good HR control and predefined narrow window acquisition result in lower radiation dose without compromising diagnostic image quality for coronary disease evaluation.


2019 ◽  
Vol 186 (4) ◽  
pp. 437-442
Author(s):  
Emil Georgiev ◽  
Radina Radeva ◽  
Emilia Naseva ◽  
Galina Kirova-Nedyalkova

Abstract The aim of this study is to investigate the possibility of replacing the standard CTA protocol for peripheral arteries with a low dose CTA protocol without affecting the diagnostic image quality. Therefore a single centre retrospective study was conducted involving 200 exams of patients undergoing lower limb angiography. All exams were performed on a 64-row detector CT and the vascular density, muscle density, noise and radiation dose of each image were assessed. The subjective image quality was evaluated additionally by an experienced radiologist. Significant differences were observed in radiation dose and image quality between the standard CTA protocol and the lower dose CTA protocol. No differences were found between objective and subjective image quality. Using 80kVp instead of 120kVp as the tube voltage for lower limb CTA reduces the radiation dose without affecting the diagnostic image quality.


2010 ◽  
Vol 61 (5) ◽  
pp. 271-279 ◽  
Author(s):  
Felipe S. Torres ◽  
Andrew M. Crean ◽  
Elsie T. Nguyen ◽  
Narinder Paul

The technological evolution of computed tomography (CT) in the last decade has placed CT coronary angiography (CTCA) in the spotlight of imaging modalities available to evaluate patients with coronary artery disease. Widespread utilisation of CTCA has generated concern from the medical community regarding potential health issues related to the significant radiation exposure associated with this method, and several modifications of the CTCA technique have been proposed to reduce the radiation exposure without affecting the diagnostic image quality. This review will discuss a practical approach to performing CTCA to ensure that the radiation dose is minimized while maintaining diagnostic image quality.


Sign in / Sign up

Export Citation Format

Share Document