scholarly journals Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications

2018 ◽  
Vol 13 (6) ◽  
pp. 649-656 ◽  
Author(s):  
Yiannis Raptodimos ◽  
Iraklis Lazakis
2022 ◽  
pp. 400-426
Author(s):  
Srinivasa P. Pai ◽  
Nagabhushana T. N.

Tool wear is a major factor that affects the productivity of any machining operation and needs to be controlled for achieving automation. It affects the surface finish, tolerances, dimensions of the workpiece, increases machine down time, and sometimes performance of machine tool and personnel are affected. This chapter deals with the application of artificial neural network (ANN) models for tool condition monitoring (TCM) in milling operations. The data required for training and testing the models studied and developed are from live experiments conducted in a machine shop on a widely used steel, medium carbon steel (En 8) using uncoated carbide inserts. Acoustic emission data and surface roughness data has been used in model development. The goal is for developing an optimal ANN model, in terms of compact architecture, least training time, and its ability to generalize well on unseen (test) data. Growing cell structures (GCS) network has been found to achieve these requirements.


Author(s):  
Magnus Fast ◽  
Thomas Palme´ ◽  
Magnus Genrup

Investigation of a novel condition monitoring approach, combining artificial neural network (ANN) with a sequential analysis technique, has been reported in this paper. For this purpose operational data from a Siemens SGT600 gas turbine has been employed for the training of an ANN model. This ANN model is subsequently used for the prediction of performance parameters of the gas turbine. Simulated anomalies are introduced on two different sets of operational data, acquired one year apart, whereupon this data is compared with corresponding ANN predictions. The cumulative sum (CUSUM) technique is used to improve and facilitate the detection of such anomalies in the gas turbine’s performance. The results are promising, displaying fast detection of small changes and detection of changes even for a degraded gas turbine.


Author(s):  
Se-Hoon Jung ◽  
Jong-Chan Kim ◽  
Chun-Bo Sim

Various types of derivative information have been increasing exponentially, based on mobile devices and social networking sites (SNSs), and the information technologies utilizing them have also been developing rapidly. Technologies to classify and analyze such information are as important as data generation. This study concentrates on data clustering through principal component analysis and K-means algorithms to analyze and classify user data efficiently. We propose a technique of changing the cluster choice before cluster processing in the existing K-means practice into a variable cluster choice through principal component analysis, and expanding the scope of data clustering. The technique also applies an artificial neural network learning model for user recommendation and prediction from the clustered data. The proposed processing model for predicted data generated results that improved the existing artificial neural network–based data clustering and learning model by approximately 9.25%.


Sign in / Sign up

Export Citation Format

Share Document