Heat transfer improvement in hybrid nanofluid flow over a moving sheet with magnetic dipole

Author(s):  
Umair Manzoor ◽  
Muhammad Imran ◽  
Taseer Muhammad ◽  
Hassan Waqas ◽  
Metib Alghamdi
2020 ◽  
Vol 66 ◽  
pp. 157-171 ◽  
Author(s):  
Najiyah Safwa Khashi'ie ◽  
Norihan Md Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
...  

2019 ◽  
Vol 29 (12) ◽  
pp. 4875-4894 ◽  
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

Purpose The purpose of this paper is to study the steady mixed convection hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux. Design/methodology/approach The governing partial differential equations are transformed into a set of ordinary differential equations by using a similarity transformation. The transformed equations are then solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The features of the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles for different values of the governing parameters are analyzed and discussed. Findings It is found that dual solutions exist for a certain range of the mixed convection parameter where its critical values decrease with the increasing of the copper (Cu) nanoparticle volume fractions and for the smaller needle size. It is also observed that the increasing of the copper (Cu) nanoparticle volume fractions and the decreasing of the needle size tend to enhance the skin friction coefficient and the local Nusselt number on the needle surface. A temporal stability analysis is performed to determine the stability of the dual solutions in the long run, and it is revealed that only one of them is stable, while the other is unstable. Originality/value The problem of hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux is the important originality of the present study where the dual solutions for the opposing flow are obtained.


2019 ◽  
Vol 43 (4) ◽  
pp. 1989-2000 ◽  
Author(s):  
Ahmed A. Hussien ◽  
Nadiahnor Md Yusop ◽  
Moh’d A. Al-Nimr ◽  
Mohd Z. Abdullah ◽  
Ayub Ahmed Janvekar ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sadaf Masood ◽  
Muhammad Farooq ◽  
Aisha Anjum

AbstractThis article focuses on hybrid nanofluid flow induced by stretched surface. The present context covers stagnation point flow of a hybrid nanofluid with the effect of heat generation/absorption. Currently most famous class of nanofluids is Hybrid nanofluid. It contains polystyrene and titanium oxide as a nanoparticles and water as a base fluid. First time attributes of heat transfer are evaluated by utilizing polystyrene–TiO2/H2O hybrid nanofluid with heat generation/absorption. Partial differential equations are converted into ordinary differential equation by using appropriate transformations for heat and velocity. Homotopy analysis method is operated for solution of ordinary differential equations. Flow and heat are disclosed graphically for unlike parameters. Resistive force and heat transfer rate is deliberated mathematically and graphically. It is deduced that velocity field enhanced for velocity ratio parameter whereas temperature field grows for heat generation/absorption coefficient. To judge the production of any engineering system entropy generation is also calculated. It is noticed that entropy generation grows for Prandtl number and Eckert number while it shows opposite behavior for temperature difference parameter.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 898 ◽  
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

This paper examines the squeezed hybrid nanofluid flow over a permeable sensor surface with magnetohydrodynamics (MHD) and radiation effects. The alumina (Al2O3) and copper (Cu) are considered as the hybrid nanoparticles, while water is the base fluid. The governing equations are reduced to the similarity equations, using the similarity transformation. The resulting equations are programmed in Matlab software through the bvp4c solver to obtain the numerical solutions. It was found that the heat transfer rate was greater for the hybrid nanofluid, compared to the regular nanofluid. It was observed that dual solutions exist for some values of the permeable parameter S. The upper branch solutions of the skin friction coefficient ( Re x 1 / 2 C f ) and the heat transfer rate at the surface ( Re x − 1 / 2 N u x ) enhance with the added Cu nanoparticle ( φ 2 ) and for larger magnetic strength ( M ). Moreover, the values of Re x 1 / 2 C f decrease, whereas the values of Re x − 1 / 2 N u x increase for both branches, with the rise of the squeeze flow index ( b ). Besides, an increment of the heat transfer rate at the sensor surface for both branches was observed in the presence of radiation ( R ). Temporal stability analysis was employed to determine the stability of the dual solutions, and it was discovered that only one of them was stable and physically reliable as time evolves.


Sign in / Sign up

Export Citation Format

Share Document