Heat transfer improvement of antifreeze by changing it to hybrid nanofluid: effects of hybrid magnesium oxide–graphene oxide nanopowders

Author(s):  
Ebrahim Roohani ◽  
Davood Toghraie
Author(s):  
Umair Manzoor ◽  
Muhammad Imran ◽  
Taseer Muhammad ◽  
Hassan Waqas ◽  
Metib Alghamdi

Author(s):  
Prashant. M. Kakade ◽  
◽  
Avinash. R. Kachere ◽  
Nandkumar. T. Mandlik ◽  
Sachin R. Rondiya ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 138
Author(s):  
Ali Rehman ◽  
Zabidin Salleh

This paper analyses the two-dimensional unsteady and incompressible flow of a non-Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type of combination, where TiO2+blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid, is studied for the first time in the literature. The fundamental partial differential equations are transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate similarity transformations. The analytical approximate method, namely the optimal homotopy analysis method (OHAM), is used for the approximate analytical solution. The convergence of the OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs. The skin friction coefficient and Nusselt number are explained in table form. The present work is found to be in very good agreement with those published earlier.


2021 ◽  
Vol 213 ◽  
pp. 108901
Author(s):  
Long Chen ◽  
Junjie Ren ◽  
Yishu Zhang ◽  
Zhanqiang Liu ◽  
Fuquan Xu ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 4683
Author(s):  
Areum Lee ◽  
Chinnasamy Veerakumar ◽  
Honghyun Cho

This paper discusses the forced convective heat transfer characteristics of water–ethylene glycol (EG)-based Fe3O4 nanofluid and Fe3O4–MWCNT hybrid nanofluid under the effect of a magnetic field. The results indicated that the convective heat transfer coefficient of magnetic nanofluids increased with an increase in the strength of the magnetic field. When the magnetic field strength was varied from 0 to 750 G, the maximum convective heat transfer coefficients were observed for the 0.2 wt% Fe3O4 and 0.1 wt% Fe3O4–MWNCT nanofluids, and the improvements were approximately 2.78% and 3.23%, respectively. The average pressure drops for 0.2 wt% Fe3O4 and 0.2 wt% Fe3O4–MWNCT nanofluids increased by about 4.73% and 5.23%, respectively. Owing to the extensive aggregation of nanoparticles by the external magnetic field, the heat transfer coefficient of the 0.1 wt% Fe3O4–MWNCT hybrid nanofluid was 5% higher than that of the 0.2 wt% Fe3O4 nanofluid. Therefore, the convective heat transfer can be enhanced by the dispersion stability of the nanoparticles and optimization of the magnetic field strength.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 887
Author(s):  
Nabeela Parveen ◽  
Muhammad Awais ◽  
Saeed Ehsan Awan ◽  
Wasim Ullah Khan ◽  
Yigang He ◽  
...  

This research concerns the heat transfer and entropy generation analysis in the MHD axisymmetric flow of Al2O3-Cu/H2O hybrid nanofluid. The magnetic induction effect is considered for large magnetic Reynolds number. The influences of thermal radiations, viscous dissipation and convective temperature conditions over flow are studied. The problem is modeled using boundary layer theory, Maxwell’s equations and Fourier’s conduction law along with defined physical factors. Similarity transformations are utilized for model simplification which is analytically solved with the homotopy analysis method. The h-curves upto 20th order for solutions establishes the stability and convergence of the adopted computational method. Rheological impacts of involved parameters on flow variables and entropy generation number are demonstrated via graphs and tables. The study reveals that entropy in system of hybrid nanofluid affected by magnetic induction declines for [...]


Sign in / Sign up

Export Citation Format

Share Document