Effects of driver nationality and road characteristics on accident fault risk

2007 ◽  
Vol 14 (3) ◽  
pp. 171-180 ◽  
Author(s):  
George Yannis ◽  
John Golias ◽  
Eleonora Papadimitriou
Keyword(s):  
2021 ◽  
Vol 10 (6) ◽  
pp. 377
Author(s):  
Chiao-Ling Kuo ◽  
Ming-Hua Tsai

The importance of road characteristics has been highlighted, as road characteristics are fundamental structures established to support many transportation-relevant services. However, there is still huge room for improvement in terms of types and performance of road characteristics detection. With the advantage of geographically tiled maps with high update rates, remarkable accessibility, and increasing availability, this paper proposes a novel simple deep-learning-based approach, namely joint convolutional neural networks (CNNs) adopting adaptive squares with combination rules to detect road characteristics from roadmap tiles. The proposed joint CNNs are responsible for the foreground and background image classification and various types of road characteristics classification from previous foreground images, raising detection accuracy. The adaptive squares with combination rules help efficiently focus road characteristics, augmenting the ability to detect them and provide optimal detection results. Five types of road characteristics—crossroads, T-junctions, Y-junctions, corners, and curves—are exploited, and experimental results demonstrate successful outcomes with outstanding performance in reality. The information of exploited road characteristics with location and type is, thus, converted from human-readable to machine-readable, the results will benefit many applications like feature point reminders, road condition reports, or alert detection for users, drivers, and even autonomous vehicles. We believe this approach will also enable a new path for object detection and geospatial information extraction from valuable map tiles.


2008 ◽  
Vol 41 (2) ◽  
pp. 2099-2104 ◽  
Author(s):  
A. Jacquet ◽  
Y. Chamaillard ◽  
M. Basset ◽  
G. Gissinger ◽  
D. Frank ◽  
...  

Transport ◽  
2018 ◽  
Vol 33 (3) ◽  
pp. 853-860
Author(s):  
Nicola BONGIORNO ◽  
Gaetano BOSURGI ◽  
Orazio PELLEGRINO ◽  
Giuseppe SOLLAZZO

This paper analyses the driver’ visual behaviour in the different conditions of ‘isolated vehicle’ and ‘disturbed vehicle’. If the meaning of the former is clear, the latter condition considers the influence on the driving behaviour of various objects that could be encountered along the road. These can be classified in static (signage, stationary vehicles at the roadside, etc.) and dynamic objects (cars, motorcycles, bicycles). The aim of this paper is to propose a proper analysis regarding the driver’s visual behaviour. In particular, the authors examined the quality of the visually informa-tion acquired from the entire road environment, useful for detecting any critical safety condition. In order to guaran-tee a deep examination of the various possible behaviours, the authors combined the several test outcomes with other variables related to the road geometry and with the dynamic variables involved while driving. The results of this study are very interesting. As expected, they obviously confirmed better performances for the ‘isolated vehicle’ in a rural two-lane road with different traffic flows. Moreover, analysing the various scenarios in the disturbed condition, the proposed indices allow the authors to quantitatively describe the different influence on the visual field and effects on the visual behaviour, favouring critical analysis of the road characteristics. Potential applications of these results may contribute to improve the choice of the best maintenance strategies for a road, to select the optimal signage location, to define forecasting models for the driving behaviour and to develop useful instruments for intelligent transportation systems.


2018 ◽  
Vol 250 ◽  
pp. 02006
Author(s):  
Zaiton Haron ◽  
Darus Nadirah ◽  
Supandi Mohamad Afif ◽  
Yahya Khairulzan ◽  
Nordiana Mashros ◽  
...  

Transverse rumble strips (TRS) are commonly being installed to alert the drivers through sound and vibration effects. The sound produced affects the existing traffic noise level which caused noise annoyance to the nearby residents. This study aims to assess the traffic noise due to TRS at residential areas by determining the roadside noise levels, traffic and road characteristics and evaluating the relationship between these parameters. Middle overlapped (MO), middle layer overlapped (MLO) and raised rumbler (RR) TRS profiles with same thickness were selected. The measurements of roadside noise levels and skid resistance were conducted using sound level meter (SLM) and British pendulum tester (BPT) respectively. Traffic characteristics were evaluated using previous data measured using automatic traffic counter (ATC). In overall, MLO produced highest roadside noise levels with increase of 20.5dBA from baseline. Generally, the increase of roadside noise level due to TRS is strong with speed, weak to medium with skid resistance of TRS and no relationship with traffic volume. Based on three TRS profile types, MLO is not suitable to be installed on the roadways adjacent to the residential areas as the increase of roadside noise level is significant which is more than 5dBA compared to MO and RR.


Sign in / Sign up

Export Citation Format

Share Document