Effects of low volume isometric leg press complex training at two knee angles on force-angle relationship and rate of force development

2018 ◽  
Vol 19 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Gregory C. Bogdanis ◽  
Athanasios Tsoukos ◽  
Spyridon K. Methenitis ◽  
Elisavet Selima ◽  
Panagiotis Veligekas ◽  
...  
2020 ◽  
Vol 45 (9) ◽  
pp. 996-1006 ◽  
Author(s):  
Spyridon Methenitis ◽  
Thomas Mpampoulis ◽  
Polyxeni Spiliopoulou ◽  
George Papadimas ◽  
Constantinos Papadopoulos ◽  
...  

This study aimed to investigate the effect of 3 different eccentric-only power training volumes on muscle fiber type composition and power performance. Twenty-nine females were assigned into 3 groups and performed 10 weeks of either 3 (low volume), 6 (moderate volume), or 9 (high volume) sets/session of 4 fast-velocity eccentric-only half-squats against 70% of concentric 1-repetition maximum (1RM), followed by 3 maximum countermovement jumps (CMJs) after each set. Half-squat 1RM, CMJ height/power, maximum isometric force, rate of force development (RFD) and muscle fiber cross-sectional area (CSA) were increased in all groups (p = 0.001). Low-volume training induced higher increases in CMJ height/power and early RFD, compared with the moderate- and high-volume training programs (p < 0.001). Significant reductions in type IIx muscle fiber percentages and %CSAs were found after moderate- and high-volume training, with concomitant increases in type IIa fibers (p = 0.001). Significant correlations were found between the changes in type IIa and type IIx percentages, fiber CSA, %CSA, and the changes in performance (r: –0.787 to 0.792; p < 0.05). These results suggest that relatively large eccentric power training volumes may result in detrimental neuromuscular adaptations, minimal changes in early RFD, and a reduction of type IIx muscle fiber percentage. Novelty Low but not high volume of power training maintains type IIx muscle fibers. Early rate of force development increases after a low- or moderate-power training volume, but not after a high-power training volume. Training-induced changes in type IIx muscle fiber percentage is related with changes in early rate of force development.


2016 ◽  
Vol 51 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Spyridon Methenitis ◽  
Gerasimos Terzis ◽  
Nikolaos Zaras ◽  
Angeliki-Nikoletta Stasinaki ◽  
Nikolaos Karandreas

Abstract Conduction of electrical signals along the surface of muscle fibers is acknowledged as an essential neuromuscular component which is linked with muscle force production. However, it remains unclear whether muscle fiber conduction velocity (MFCV) is also linked with explosive performance. The aim of the present study was to investigate the relationship between vastus lateralis MFCV and countermovement jumping performance, the rate of force development and maximum isometric force. Fifteen moderately-trained young females performed countermovement jumps as well as an isometric leg press test in order to determine the rate of force development and maximum isometric force. Vastus lateralis MFCV was measured with intramuscular microelectrodes at rest on a different occasion. Maximum MFCV was significantly correlated with maximum isometric force (r = 0.66, p < 0.01), nevertheless even closer with the leg press rate of force development at 100 ms, 150 ms, 200 ms, and 250 ms (r = 0.85, r = 0.89, r = 0.91, r = 0.92, respectively, p < 0.01). Similarly, mean MFCV and type II MFCV were better correlated with the rate of force development than with maximum isometric leg press force. Lower, but significant correlations were found between mean MFCV and countermovement jump power (r = 0.65, p < 0.01). These data suggest that muscle fiber conduction velocity is better linked with the rate of force development than with isometric force, perhaps because conduction velocity is higher in the larger and fastest muscle fibers which are recognized to contribute to explosive actions.


2020 ◽  
Vol 9 (1) ◽  
pp. 1-15
Author(s):  
Samuel John Collins

This study investigated the effects of a strength-power complex on subsequent ballistic activity (BA) performance responses across a profile of jumps in adolescent talent-identified rugby players. Rate of force development (RFD) and BA performance responses was recorded in 22 participants over four intracomplex rest intervals (ICRI) (15s, 30s, 45s, 60s) following a complex of 3 repetitions of back squat @80% 1RM and 7 countermovement jumps (CMJs) in a randomised, counterbalanced design. Within subjects, repeated measures ANOVAs were conducted on peak rate of force development (PRFD), time to peak rate of force development (TPRFD), peak force (PF), and time to a peak force (TPF). Confidence limits were set at ±90% and effect size across the sample (partial ?²) was calculated across P1-P4 for all jump profiles. No significant effects were observed across jump profiles or ICRI. The research confirms RFD and BA performance responses were maintained across all jump profiles and each ICRI. In contrast to previous research, the use of minimal ICRI of 15s, 30s, 45s and 60s following strength-power complex training is a practical time-efficient means of maintaining RFD and BA performance responses across jump profiles of seven jumps, which has important implications in practical coaching environments.


2020 ◽  
Vol 11 (1) ◽  
pp. 45
Author(s):  
Nikolaos Zaras ◽  
Angeliki-Nikoletta Stasinaki ◽  
Polyxeni Spiliopoulou ◽  
Thomas Mpampoulis ◽  
Marios Hadjicharalambous ◽  
...  

The purpose of the study was to investigate the effect of seven weeks inter-repetition rest vs. traditional strength training on lower body strength, rate of force development (RFD), and vastus lateralis (VL) muscle architecture. Sixteen male participants were assigned into two groups: the inter-repetition rest (IRRG) and the traditional (TG) group. Both groups performed the leg press exercise with four sets of six maximum repetitions (RM) for two training sessions per week. IRRG added a 20 s inter-repetition rest period between single repetitions. Before and after the training period, 1-RM in leg press, isometric leg press RFD, and peak force (PF), VL muscle architecture, vastus intermedius (VI) thickness, and quadriceps’ cross sectional area (CSA) with ultrasonography, were measured. Two way ANOVA for repeated measures was used for statistics. One-RM strength increased similarly for both groups (p < 0.05), while percentage increases in RFD were greater for IRRG compared to TG (p < 0.05). Isometric PF was increased similarly for both groups (p < 0.05). VL and VI thickness as well as CSA of the quadriceps increased similarly in both groups, while VL fascicle length increased more following IRRG compared to TG (IRRG: 4.8 ± 6.1% vs. TG: −3.9 ± 5.4%, p = 0.001). These results suggest that 20 s inter-repetition rest during strength training may effectively increase lower body explosive strength and muscle fascicle length without compromising muscle hypertrophy.


2017 ◽  
Vol 22 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Kazuya Takeda ◽  
Shigeo Tanabe ◽  
Soichiro Koyama ◽  
Tomoko Nagai ◽  
Hiroaki Sakurai ◽  
...  

2009 ◽  
Vol 96 (3) ◽  
pp. 621a
Author(s):  
Frederick S. Korte ◽  
Michael Regnier ◽  
Todd E. Gillis

Sign in / Sign up

Export Citation Format

Share Document