Representability of Cauchy-type integrals of finite complex measures on the real axis in terms of their boundary values

2016 ◽  
Vol 62 (4) ◽  
pp. 536-553 ◽  
Author(s):  
Rashid A. Aliev
2001 ◽  
Vol 33 (3) ◽  
pp. 309-319 ◽  
Author(s):  
KONRAD SCHMÜDGEN

Let f be a holomorphic function on the strip {z ∈ [Copf ] : −α < Im z < α}, where α > 0, belonging to the class [Hscr ](α,−α;ε) defined below. It is shown that there exist holomorphic functions w1 on {z ∈ [Copf ] : 0 < Im z < 2α} and w2 on {z ∈ [Copf ] : −2α < Im z < 2α}, such that w1 and w2 have boundary values of modulus one on the real axis, and satisfy the relationsw1(z)=f(z-αi)w2(z-2αi) and w2(z+2αi)=f(z+αi)w1(z)for 0 < Im z < 2α, where f(z) := f(z). This leads to a ‘polar decomposition’ f(z) = uf(z + αi)gf(z) of the function f(z), where uf (z + αi) and gf(z) are holomorphic functions for −α < Im z < α, such that [mid ]uf(x)[mid ] = 1 and gf(x) [ges ] 0 almost everywhere on the real axis. As a byproduct, an operator representation of a q-deformed Heisenberg algebra is developed.


Author(s):  
S. Brodetsky ◽  
G. Smeal

The only really useful practical method for solving numerical algebraic equations of higher orders, possessing complex roots, is that devised by C. H. Graeffe early in the nineteenth century. When an equation with real coefficients has only one or two pairs of complex roots, the Graeffe process leads to the evaluation of these roots without great labour. If, however, the equation has a number of pairs of complex roots there is considerable difficulty in completing the solution: the moduli of the roots are found easily, but the evaluation of the arguments often leads to long and wearisome calculations. The best method that has yet been suggested for overcoming this difficulty is that by C. Runge (Praxis der Gleichungen, Sammlung Schubert). It consists in making a change in the origin of the Argand diagram by shifting it to some other point on the real axis of the original Argand plane. The new moduli and the old moduli of the complex roots can then be used as bipolar coordinates for deducing the complex roots completely: this also checks the real roots.


2016 ◽  
Vol 22 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Xu Wang ◽  
Hui Fan

In the present analytical study, we consider the problem of a nanocrack with surface elasticity interacting with a screw dislocation. The surface elasticity is incorporated by using the continuum-based surface/interface model of Gurtin and Murdoch. By considering both distributed screw dislocations and line forces on the crack, we reduce the interaction problem to two decoupled first-order Cauchy singular integro-differential equations which can be numerically solved by the collocation method. The analysis indicates that if the dislocation is on the real axis where the crack is located, the stresses at the crack tips only exhibit the weak logarithmic singularity; if the dislocation is not on the real axis, however, the stresses exhibit both the weak logarithmic and the strong square-root singularities. Our result suggests that the surface effects of the crack will make the fracture more ductile. The criterion for the spontaneous generation of dislocations at the crack tip is proposed.


2020 ◽  
Vol 32 (5) ◽  
pp. 1131-1141 ◽  
Author(s):  
Paweł Zaprawa

AbstractIn this paper we discuss coefficient problems for functions in the class {{\mathcal{C}}_{0}(k)}. This family is a subset of {{\mathcal{C}}}, the class of close-to-convex functions, consisting of functions which are convex in the positive direction of the real axis. Our main aim is to find some bounds of the difference of successive coefficients depending on the fixed second coefficient. Under this assumption we also estimate {|a_{n+1}|-|a_{n}|} and {|a_{n}|}. Moreover, it is proved that {\operatorname{Re}\{a_{n}\}\geq 0} for all {f\in{\mathcal{C}}_{0}(k)}.


Sign in / Sign up

Export Citation Format

Share Document