Investigation of soil plug formation in hollow piles using PIV technique

Author(s):  
Sreelakshmi G ◽  
Asha M. N
Author(s):  
Sascha Henke ◽  
Ju¨rgen Grabe

The development of soil plug inside open-ended steel-piles is investigated using Finite-Element method. The penetration of a rigid pile with various diameter into granular soil is simulated numerically to better understand the mechanisms which occur during pile installation inside the open-ended piles. The numerical results are analyzed for a better understanding of the influence of the installation method on soil plugging. The received results are compared to experimental results out of literature. Concluding, a parametric study is fulfilled to examine the role of soil density and pile diameter concerning the tendency of plug formation inside a jacked pile.


2020 ◽  
Vol 118 ◽  
pp. 103334 ◽  
Author(s):  
Teng Wang ◽  
Yu Zhang ◽  
Xingxian Bao ◽  
Xiaoni Wu
Keyword(s):  

Author(s):  
M.P. Doubrovsky ◽  
◽  
V.O. Dubravina ◽  

Modern marine structures (berths, breakwaters, offshore platforms, etc.) often include steel tubular piles of essential length (80-100 m and more) that should provide high bearing capacity in case of external axial loads application. Interaction between elements of the system “piled structure – soil media” is not studied sufficiently yet. It relates also to the bearing capacity of the long steel tubular piles of large diameter. One of the interesting peculiarities of long tubular piles behavior is the formation of soil plug at the piles tip. There are a lot of suggestion and methods aimed to increase piles bearing capacity under static pressing load. One of them relates to use of the additional structural element, i.e., the internal diaphragm welded to the internal surface of the pile shaft. Such approach has been applied in some practical cases of marine construction and demonstrated its effectiveness. At the moment there are no researches focused on study of the peculiarities of internal diaphragm application. So proposed research aimed to study two connected processes during steel tubular pile driving: soil plug formation at the tip of the open-end pile and soil behavior under the internal diaphragm fixed inside the tubular pile shaft. To study mentioned processes we provided several series of laboratory experiments fulfilled at the Geotechnical laboratory of the Department “Sea, River Ports and Waterways” in Odessa National Maritime University. In these experiments the model of steel tubular pile has been driven (pressed) into fine sand by mechanical jack. The first series was devoted to determination of the conditions related to the soil plug formation at the pile tip. The next series were aimed to study the influence of the flat rigid diaphragm inside the pile shaft. Obtained experimental results allow to conclude that (a) in the fine sand the plug is formatted at the comparatively early stage of pile installation (in case of our modeling – at the penetration depth of some 4-5 pile diameter); (b) our empirical assessment of the conditions of soil plug formation corresponds to the approaches based on PLR and IFR characteristics; (c) formation of soil plug at the pile tip is followed by decreasing of soil level in the pile shaft relatively its initial value (on completing the plug formation the soil level in the shaft become stable); (d) regarding above mentioned, we may note that in case of use of internal diaphragm on the recommended depth (5-7 pile diameters) there may be no contact between diaphragm and the soil inside the pile (e) application of the diaphragm may lead to increasing of the pile’s bearing capacity. It was proposed (and checked by our tests) the technological improvement based on sand filling into space under the internal diaphragm to provide constant diaphragm-soil contact and related soil resistance.


2020 ◽  
pp. 14-21
Author(s):  
Michael Doubrovsky ◽  
Vladyslava Dubravina

Modern marine structures (berths, breakwaters, offshore platforms, etc.) often include steel tubular piles of essential length (80-100 m and more) that should provide high bearing capacity in case of external axial loads application. Interaction between elements of the system “piled structure – soil media” is not yet studied sufficiently. It relates also to the bearing capacity of the long steel tubular piles of large diameter. One of the interesting peculiarities of long tubular piles’ behavior is the formation of soil plug at the piles’ tip. There are a lot of suggestion and methods aimed to increase piles bearing capacity under static pressing load. One of them relates to use of the additional structural element, i.e., the internal diaphragm welded to the internal surface of the pile’s shaft. Such approach has been applied in some practical cases of marine construction and demonstrated its effectiveness. At the moment there are no researches focused on study of the peculiarities of internal diaphragm application. So proposed research aimed to study two connected processes during steel tubular pile driving: soil plug formation at the tip of the open-end pile and soil behavior under the internal diaphragm fixed inside the tubular pile’s shaft. To study mentioned processes we provided several series of laboratory experiments fulfilled at the Geotechnical laboratory of the Department “Sea, River Ports and Waterways” in Odessa National Maritime University. In these experiments the model of steel tubular pile has been driven (pressed) into fine sand by mechanical jack. The first series was devoted to determination of the conditions related to the soil plug formation at the pile’s tip (results are presented in this paper). The next series were aimed to study the influence of the rigid diaphragm inside the pile’s shaft (to be presented in the further publications). Obtained experimental results allow to conclude that (a) in the fine sand the plug is formatted at the comparatively early stage of pile installation (in case of our modeling - at the penetration depth of some 4-5 pile’s diameter); (b) our empirical assessment of the conditions of soil plug formation corresponds to the approaches based on PLR and IFR characteristics; (c) formation of soil plug at the pile’s tip is followed by decreasing of soil level in the pile’s shaft relatively its initial value (on completing the plug formation the soil level in the shaft become stable); (d) regarding above mentioned, we may note that in case of use of internal diaphragm on the recommended depth (5-7 pile’s diameters) there may be no contact between diaphragm and the soil inside the pile and the diaphragm does not come up with the soil. So, for the next series of our experiments, it should be foreseen assured contact of the diaphragm’s surface with soil underneath. As proved by previous studies, one of the interesting features of the behavior of long tubular piles is the formation of a soil plug at the lower end of the pile. From this point of view, it is important to study the effect of soil plug not only on the bearing capacity at the lower end of the pile, but also on the behavior of the soil inside the pile. It is shown that in fine-sandy soils a plug is formed at a relatively early stage of pile immersion (in this case - at a depth of immersion of about 4-5 pile diameters). The process of forming a soil plug at the lower end of the tubular pile during its immersion is accompanied by a decrease in soil surface level in the pile trunk relative to its initial value (upon completion of plug formation the soil surface level in the pile trunk stabilizes).  


Author(s):  
Sascha Henke

Soil-plugging inside open-ended piles is a well-known phenomenon which increases vertical bearing capacity on the one hand but also leads to increasing driving resistance. There are many different factors affecting the tendency of soil-plug formation like pile diameter, geometry of the pile, installation method, soil density and so on. With the basis of experimental data numerical models to simulate the pile installation process to better understand the mechanisms of soil plugging inside open-ended piles are validated. The validated numerical models are used to examine different aspects regarding the phenomenon of soil plug formation. First, the evolution of internal and external shaft friction is investigated in more detail with focus on pile diameter. Furthermore, the impact of internal reinforcements like internal rings are investigated numerically. The shape of the internal ring is varied throughout this study to evaluate the influence of this key factor on internal stress development.


1987 ◽  
Vol 57 (01) ◽  
pp. 062-066 ◽  
Author(s):  
P A Kyrle ◽  
J Westwick ◽  
M F Scully ◽  
V V Kakkar ◽  
G P Lewis

SummaryIn 7 healthy volunteers, formation of thrombin (represented by fibrinopeptide A (FPA) generation, α-granule release (represented by β-thromboglobulin [βTG] release) and the generation of thromboxane B2 (TxB2) were measured in vivo in blood emerging from a template bleeding time incision. At the site of plug formation, considerable platelet activation and thrombin generation were seen within the first minute, as indicated by a 110-fold, 50-fold and 30-fold increase of FPA, TxB2 and PTG over the corresponding plasma values. After a further increase of the markers in the subsequent 3 minutes, they reached a plateau during the fourth and fifth minute. A low-dose aspirin regimen (0.42 mg.kg-1.day-1 for 7 days) caused >90% inhibition of TxB2formation in both bleeding time blood and clotted blood. At the site of plug formation, a-granule release was substantially reduced within the first three minutes and thrombin generation was similarly inhibited. We conclude that (a) marked platelet activation and considerable thrombin generation occur in the early stages.of haemostasis, (b) α-granule release in vivo is partially dependent upon cyclo-oxygenase-controlled mechanisms and (c) thrombin generation at the site of plug formation is promoted by the activation of platelets.


1980 ◽  
Vol 44 (01) ◽  
pp. 006-008 ◽  
Author(s):  
D Bergqvist ◽  
K-E Arfors

SummaryIn a model using an isolated rabbit mesenteric preparation microvessels were transected and the time until haemostatic plugs formed was registered. Perfusion of platelet rich plasma gave no haemostasis whereas whole blood did. Addition of chlorpromazine or adenosine to the whole blood significantly prolonged the time for haemostasis, and addition of ADP to the platelet rich plasma significantly shortened it. It is concluded that red cells are necessary for a normal haemostasis in this model, probably by a combination of a haemodynamic and ADP releasing effect.The fundamental role of platelets in haemostatic plug formation is unquestionable but there are still problems concerning the stimulus for this process to start. Three platelet aggregating substances have been discussed – thrombin, adenosine diphosphate (ADP) and collagen. Evidence speaking in favour of thrombin is, however, very minimal, and the discussion has to be focused on collagen and ADP. In an in vitro system using polyethylene tubings we have shown that "haemostasis" can be obtained without the presence of collagen but against these results can be argued that it is only another in vitro test for platelet aggregation (1).To be able to induce haemostasis in this model, however, the presence of red blood cells is necessary. To further study this problem we have developed a model where haemostatic plug formation can be studied in the isolated rabbit mesentery and we have briefly reported on this (2).Thus, it is possible to perfuse the vessels with whole blood as well as with platelet rich plasma (PRP) and different pharmacological agents of importance.


2011 ◽  
Vol 21 (6) ◽  
pp. 447-465 ◽  
Author(s):  
Jingyu Zhu ◽  
Keiya Nishida ◽  
Olawole Abiola Kuti ◽  
Seoksu Moon

Sign in / Sign up

Export Citation Format

Share Document