A secure hash function based on feedback iterative structure

2019 ◽  
Vol 13 (3) ◽  
pp. 281-302 ◽  
Author(s):  
Yijun Yang ◽  
Fei Chen ◽  
Jianyong Chen ◽  
Yong Zhang ◽  
Kai Leung Yung
2020 ◽  
Vol 3 (2) ◽  
pp. 182-186
Author(s):  
Lisnayani Silalahi ◽  
Anita Sindar

Data security and confidentiality is currently a very important issue and continues to grow. Several cases concerning data security are now a job that requires handling and security costs that are so large. To maintain the security and confidentiality of messages, data, or information so that no one can read or understand it, except for the rightful recipients, a data security system application with an encryption method using an algorithm is designed. The SHA-1 cryptographic hash function that takes input and produces a 160-bit hash value which is known as the message iteration is usually rendered as a 40-digit long hexadecimal number.


2012 ◽  
Vol 35 (9) ◽  
pp. 1868 ◽  
Author(s):  
Wei YU ◽  
Kun-Peng WANG ◽  
Bao LI ◽  
Song TIAN
Keyword(s):  

2013 ◽  
Vol 33 (5) ◽  
pp. 1350-1352
Author(s):  
Peng LIU ◽  
Changhong ZHANG ◽  
Qingyu OU

Author(s):  
Keith M. Martin

This chapter discusses cryptographic mechanisms for providing data integrity. We begin by identifying different levels of data integrity that can be provided. We then look in detail at hash functions, explaining the different security properties that they have, as well as presenting several different applications of a hash function. We then look at hash function design and illustrate this by discussing the hash function SHA-3. Next, we discuss message authentication codes (MACs), presenting a basic model and discussing basic properties. We compare two different MAC constructions, CBC-MAC and HMAC. Finally, we consider different ways of using MACs together with encryption. We focus on authenticated encryption modes, and illustrate these by describing Galois Counter mode.


Author(s):  
Eaton E. Lattman ◽  
Thomas D. Grant ◽  
Edward H. Snell

Direct electron density determination from SAXS data opens up new opportunities. The ability to model density at high resolution and the implicit direct estimation of solvent terms such as the hydration shell may enable high-resolution wide angle scattering data to be used to calculate density when combined with additional structural information. Other diffraction methods that do not measure three-dimensional intensities, such as fiber diffraction, may also be able to take advantage of iterative structure factor retrieval. While the ability to reconstruct electron density ab initio is a major breakthrough in the field of solution scattering, the potential of the technique has yet to be fully uncovered. Additional structural information from techniques such as crystallography, NMR, and electron microscopy and density modification procedures can now be integrated to perform advanced modeling of the electron density function at high resolution, pushing the boundaries of solution scattering further than ever before.


Author(s):  
Mohamed El-Hadedy ◽  
Martin Margala ◽  
Sergiu Mosanu ◽  
Danilo Gligoroski ◽  
Jinjun Xiong ◽  
...  

2021 ◽  
Author(s):  
Hongjun Liu ◽  
Xingyuan Wang ◽  
Abdurahman Kadir
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document