scholarly journals Measurements of water-mass properties with a glider in the South-western Adriatic Sea

2016 ◽  
Vol 9 (sup1) ◽  
pp. s3-s9 ◽  
Author(s):  
E. Mauri ◽  
R. Gerin ◽  
P.-M. Poulain
2017 ◽  
Vol 47 (2) ◽  
pp. 419-432 ◽  
Author(s):  
Xiaowei Wang ◽  
Zhiyu Liu ◽  
Shiqiu Peng

AbstractUsing a high-resolution regional ocean model, the impact of tidal mixing on water mass transformation and circulation in the South China Sea (SCS) is investigated through a set of numerical experiments with different configurations of tide-induced diapycnal diffusivity. The results show that including tidal mixing in both the Luzon Strait (LS) and SCS has significant impact on the LS transport and the intermediate–deep layer circulation in the SCS Basin. Analysis of the density field indicates that tidal mixing in both the LS and SCS are essential for sustaining a consistent density gradient and thus a persistent outward-directed baroclinic pressure gradient both between the western Pacific and LS and between the LS and SCS Basin, so as to maintain the strong deep-water transport through the LS. Further analysis of water mass properties suggests that tidal mixing in the deep SCS would strengthen the horizontal density gradient, intensify the basin-scale cyclonic circulation, induce more vigorous overturning, as well as generate the subbasin-scale eddies in the abyssal SCS. The results imply that tidal mixing in both the LS and SCS plays a key dynamic role in controlling water mass properties and deep circulation features in the SCS and thus need to be deliberately parameterized in ocean circulation models for this region.


2021 ◽  
Author(s):  
Aleksandra Huter ◽  
Dragana Drakulović ◽  
Sandra Jokanović

2014 ◽  
Vol 21 (1) ◽  
pp. 95-106
Author(s):  
Luka Mudronja ◽  
Marko Katalinić ◽  
Rino Bošnjak ◽  
Pero Vidan ◽  
Joško Parunov

AbstractThis paper presents operability guidelines for seafarers on a product tanker which navigates in the Adriatic Sea during heavy weather. Tanker route starts from the Otranto strait in the south to the island Krk in the north of Adriatic Sea. Heavy weather is caused by south wind called jugo (blowing from E-SE to SS-E, sirocco family). Operability guidelines are given based on an operability criteria platform for presenting ship seakeeping characteristics. Operability criteria considered in this paper are propeller emergence, deck wetness and bow acceleration of a product tanker. Limiting values of mentioned criteria determine sustainable speed. Heavy weather is described by extreme sea state of 7.5 m wave height. Wave spectrum used in this paper is Tabain spectrum which is developed specifically for Adriatic Sea. Seafarer's approach of decisions making in extreme weather is also shown and servers as a guideline for further research of the authors.


2014 ◽  
Vol 11 (1) ◽  
pp. 331-390
Author(s):  
M. Lipizer ◽  
E. Partescano ◽  
A. Rabitti ◽  
A. Giorgetti ◽  
A. Crise

Abstract. An updated climatology, based on a comprehensive dataset (1911–2009) of temperature, salinity and dissolved oxygen, has been produced for the whole Adriatic Sea with the Variational Inverse Method using the DIVA software. Climatological maps were produced at 26 levels and validated with Ordinary Cross Validation and with real vs. synthetic Temperature–Salinity diagram intercomparison. The concept of Climatology–Observation Misfit (COM) has been introduced as an estimate of the physical variability associated with the climatological structures. In order to verify the temporal stability of the climatology, long-term variability has been investigated in the Mid Adriatic and the South Adriatic Pits, regarded as the most suitable records of possible long-term changes. Compared with previous climatologies, this study reveals a surface temperature rise (up to 2 °C), a clear deep dissolved oxygen minimum in the South Adriatic Gyre and a bottom summer oxygen minimum in the North Adriatic. Below 100 m all properties profoundly differ between the Middle and the South Adriatic. The South Adriatic Pit clearly shows the remote effects of the Eastern Mediterranean Transient, while no effect is observed in Middle Adriatic Pits. The deepest part of the South Adriatic seems now to be significantly saltier (+0.18 since the period 1911–1914, with an increase of +0.018 decade−1 since the late 1940s) and warmer (+0.54 °C since 1911–1914), even though a long-term temperature trend could not be statistically demonstrated. Conversely, the Middle Adriatic Pits present a long-term increase in apparent oxygen utilisation (+0.77 mL L−1 since 1911–1914, with a constant increase of +0.2 mL L−1 decade−1 after the 1970s).


2010 ◽  
Vol 60 (5) ◽  
pp. 1177-1192 ◽  
Author(s):  
Jieshun Zhu ◽  
Entcho Demirov ◽  
Fred Dupont ◽  
Daniel Wright

2021 ◽  
Author(s):  
Jadranka Sepic ◽  
Mira Pasaric ◽  
Iva Medugorac ◽  
Ivica Vilibic ◽  
Maja Karlovic ◽  
...  

<p>The northern and the eastern coast of the Adriatic Sea are occasionally affected by extreme sea-levels known to cause substantial material damage. These extremes appear due to the superposition of several ocean processes that occur at different periods, have different spatial extents, and are caused by distinct forcing mechanisms.</p><p>To better understand the extremes, hourly sea-level time series from six tide-gauge stations located along the northern and the eastern Adriatic coast (Venice, Trieste, Rovinj, Bakar, Split, Dubrovnik) were collected for the period of 1956 to 2015 (1984 to 2015 for Venice) and analysed. The time series have been checked for spurious data, and then decomposed using tidal analysis and filtering procedures. The following time series were thus obtained for each station: (1) trend; (2) seasonal signal; (3) tides; (4-7) sea-level oscillations at periods: (4) longer than 100 days, (5) from 10 to 100 days, (6) from 6 hours to 10 days, and (7) shorter than 6 hours. These bands correspond, respectively, to sea-level fluctuations dominantly forced by (but not restricted to): (1) climate change and land uplift and sinking; (2) seasonal changes; (3) tidal forcing; (4); quasi-stationary atmospheric and ocean circulation and climate variability patterns; (5) planetary atmospheric waves; (6) synoptic atmospheric processes; and (7) mesoscale atmospheric processes.</p><p>Positive sea-level extremes surpassing 99.95 and 99.99 percentile values, and negative sea-level extremes lower than 0.05 and 0.01 percentile values were extracted from the original time series for each station. It was shown that positive (negative) extremes are up to 50-100% higher (lower) in the northern than in the south-eastern Adriatic. Then, station-based distributions, return periods, seasonal distributions, event durations, and trends were estimated and assessed. It was shown that the northern Adriatic positive sea-level extremes are dominantly caused by synoptic atmospheric processes superimposed to positive tide (contributing jointly to ~70% of total extreme height), whereas more to the south-east, positive extremes are caused by planetary atmospheric waves, synoptic atmospheric processes, and tides (each contributing with an average of ~25%). As for the negative sea-level extremes, these are due to a combination of planetary atmospheric waves and tides: in the northern Adriatic tide provides the largest contribution (~60%) while in the south-eastern Adriatic the two processes are of similar impact (each contributing with an average of ~30%). The simultaneity of the events along the entire northern and eastern Adriatic coast was studied as well, revealing that positive extremes are strongly regional dependant, i.e. that they usually appear simultaneously only along one part of the coast, whereas negative extremes are more likely to appear along the entire coast at the same time.</p><p>Finally, it is suggested that the distribution of sea-level extremes along the south-eastern Adriatic coast can be explained as a superposition of tidal forcing and prevailing atmospheric processes, whereas for the northern Adriatic, strong topographic enhancement of sea-level extremes is also important.</p>


Sign in / Sign up

Export Citation Format

Share Document