Sea surface temperature effects on the modelled track and intensity of tropical cyclone Gonu

Author(s):  
Mehriar Alimohammadi ◽  
Hossein Malakooti ◽  
Maryam Rahbani
2018 ◽  
Vol 53 (1-2) ◽  
pp. 173-192 ◽  
Author(s):  
Wei-Ching Hsu ◽  
Christina M. Patricola ◽  
Ping Chang

2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


2021 ◽  
Vol 925 (1) ◽  
pp. 012021
Author(s):  
D W Purnaningtyas ◽  
F Khadami ◽  
Avrionesti

Abstract Tropical cyclone (TC) passage triggers a complex response from the adjacent ocean, including vertical mixing, leading to biochemical alterations and affecting the surrounding ecosystem’s dynamics. In previous studies, increased nutrient concentrations and primary production were observed along the cyclone track after the storm. TC Seroja was awakened near the equator in the southeastern tropical Indian Ocean, making it interesting to investigate how the ambient ecosystem responds. Hence, we analyzed the sea surface temperature and nutrient changes during the Seroja event using multi-satellite remote sensing and numerical model data in the south of Indonesia and East Timor along the Seroja track between April 2 and 10, 2021. Immediately after the TC Seroja passed, the sea surface temperature cooled to 3 °C around the TC lane. At the same time, the spatial distribution patterns showed the upsurge of some nutrients in response to the passage of TC Seroja; the surface nitrate swells up to 1.5 mmol/m3, while phosphate increased up to 0.2 mmol/m3, and the dissolved silicate concentration enhanced up to 1.0 mmol/m3. The responses recover within 2-7 days. These results indicate that tropical cyclones contribute to nutrient enrichment in oligotrophic areas outside of their usual annual upwelling time, thereby further supporting ecosystem sustainability.


Sign in / Sign up

Export Citation Format

Share Document