Tropical cyclone predictability shaped by western Pacific subtropical high: integration of trans-basin sea surface temperature effects

2019 ◽  
Vol 53 (5-6) ◽  
pp. 2697-2714 ◽  
Author(s):  
Chao Wang ◽  
Bin Wang
2018 ◽  
Vol 53 (1-2) ◽  
pp. 173-192 ◽  
Author(s):  
Wei-Ching Hsu ◽  
Christina M. Patricola ◽  
Ping Chang

2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


2020 ◽  
Author(s):  
Niklas Meinicke ◽  
Maria Reimi ◽  
Christina Ravelo ◽  
Nele Meckler

<p>The Western Pacific Warm Pool (WPWP) as a major source of heat and water vapor has a crucial influence on climate dynamics both in the tropics and globally. Yet, there is conflicting proxy evidence regarding the evolution of WPWP temperatures since the Miocene. On the one hand TEX<sub>86</sub> data suggest a gradual cooling by ~2℃ (O’Brian et al., 2014, Zhang et al., 2014) from the Pliocene to today, while faunal (planktonic foraminifera) sea surface temperature estimates (Dowsett, 2007) and Mg/Ca data measured in planktonic foraminifera (Wara et al., 2005) on the other hand indicate the absence of any long-term temperature trends. It has been suggested that Mg/Ca temperatures could on these time scales be biased by long-term changes of the Mg/Ca ratio of seawater (Evans et al., 2016). To test the influence of the proposed seawater changes on Mg/Ca we combined data from two independent temperature proxies, Mg/Ca and clumped isotopes, measured on two species of planktonic foraminifera from IODP Site U1488 in the central WPWP. Our study finds good agreement between both proxies thereby verifying the validity of Mg/Ca records from the WPWP and confirming the absence of a Plio-Pleistocene cooling trend for the WPWP. This finding suggests that the persistent disagreement between foraminifer-based proxies such as Mg/Ca and biomarker data might be caused by different environmental parameters being recorded in the two archives.</p><p> </p><p>References:</p><p>O’Brien CL, Foster GL, Martínez-Botí MA, Abell R, Rae JWB, Pancost RD. High sea surface temperatures in tropical warm pools during the Pliocene. Nature Geoscience. 2014;7(8):606-11.</p><p>Zhang YG, Pagani M, Liu Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science. 2014;344(6179):84-7.</p><p>Dowsett H. Faunal re-evaluation of Mid-Pliocene conditions in the western equatorial Pacific. Micropaleontology. 2007;53(6):447-56.</p><p>Wara MW, Ravelo AC, Delaney ML. Permanent El Nino-like conditions during the Pliocene warm period. Science. 2005;309(5735):758-61.</p><p>Evans D, Brierley C, Raymo ME, Erez J, Müller W. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. Earth and Planetary Science Letters. 2016;438:139-48.</p>


Sign in / Sign up

Export Citation Format

Share Document