Nodal Expansion Method for Solution of Diffusion Equation in Hexagonal Geometry

1989 ◽  
Vol 26 (6) ◽  
pp. 636-638 ◽  
Author(s):  
Jun'ichi KOYAMA ◽  
Motoo AOYAAMA
2010 ◽  
Vol 240 (8) ◽  
pp. 1997-2004 ◽  
Author(s):  
Dengying Wang ◽  
Fu Li ◽  
Jiong Guo ◽  
Jinfeng Wei ◽  
Jingyu Zhang ◽  
...  

Author(s):  
Xiafeng Zhou ◽  
Fu Li

Nodal expansion method (NEM), well known for its high accuracy and efficiency, has been widely applied to reactor physics analysis. It is proven that NEM has an advantage over traditional finite difference method (FDM) and finite volume method (FVM). However, for most reactor thermal hydraulic codes, traditional FDM or FVM is still in use, and the NEM is barely utilized. Therefore, to make full use of the advantages of NEM and effectively solve the thermal hydraulic problems, the derivation and analytical process of nodal expansion method for transient convection-diffusion equation is studied in this paper. First, time discretization is derived by finite difference method, and then is manipulated to ensure that the form of convection-diffusion equation is consistent with that of neutron diffusion equation. After that, the approach of NEM for neutron diffusion equation can be easily utilized in the thermal hydraulic codes, and the code TNEM based on NEM is developed to solve the multi-dimensional transient convection-diffusion equation. At last, through the numerical benchmarks and error analysis, the numerical results of TNEM are found to agree well with the reference solutions and are superior to that of center difference scheme and first order upwind scheme as for the one-dimensional problem and multi-dimensional problem. Furthermore, good accuracy can be maintained even for coarse meshes.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Hasibun Naher ◽  
Farah Aini Abdullah

We construct new exact traveling wave solutions involving free parameters of the nonlinear reaction diffusion equation by using the improved (G′/G)-expansion method. The second-order linear ordinary differential equation with constant coefficients is used in this method. The obtained solutions are presented by the hyperbolic and the trigonometric functions. The solutions become in special functional form when the parameters take particular values. It is important to reveal that our solutions are in good agreement with the existing results.


Sign in / Sign up

Export Citation Format

Share Document