Prediction of Fuel Performance and Fission Gas Release Behavior during Normal Operation of the High Temperature Engineering Test Reactor by JAERI and FZJ Modeling Approach

2001 ◽  
Vol 38 (6) ◽  
pp. 411-419 ◽  
Author(s):  
Kazuhiro SAWA ◽  
Shouhei UETA ◽  
Junya SUMITA ◽  
Karl VERFONDERN
Author(s):  
Martina Adorni ◽  
Alessandro Del Nevo ◽  
Paul Van Uffelen ◽  
Francesco Oriolo ◽  
Francesco D’Auria

The fuel matrix and the cladding constitute the first barrier against radioactive fission product release. Therefore a defense in depth concept requires also the comprehensive understanding of fuel rod behavior and accurate prediction of the lifetime in normal operation and in accident condition as well. Investigations of fuel behavior are carried out in close connection with experimental research operation feedback and computational analyses. In this connection, OECD NEA sets up the “public domain database on nuclear fuel performance experiments for the purpose of code development and validation - International Fuel Performance Experiments (IFPE) database”, with the aim of providing a comprehensive and well-qualified database on UO2 fuel with Zr cladding for model development and code validation. This database includes the data set of the Studsvik Inter-Ramp BWR Project. The objectives of the project are to establish the failure-safe operating limits and the failure mechanism and associated phenomena, during power ramp tests, by varying the design parameters (i.e. cladding heat treatment, gap thickness and fuel density). The experimental data are used for the assessment of the Fission Gas Release (FGR) models implemented in the TRANSURANUS code versions “v1m1j07” and “v1m1j08”. The starting point of the activity is the availability of a “new” transient fission gas release model, the “TFGR model”, specifically implemented in the last code version, to cover power ramp conditions. The paper presents the complete set of simulations of all twenty rods irradiated in the R2 research reactor and the corresponding comparisons with the experimental data. Sensitivity calculations are also performed to address the influence of geometric parameters and the choice of the different code options, relevant to model the FGR, on results.


1988 ◽  
Vol 158 ◽  
pp. 64-70 ◽  
Author(s):  
Toshiaki Kogai ◽  
Kenichi Ito ◽  
Yoshihiko Iwano

Author(s):  
Hanno van der Merwe ◽  
Johan Venter

The evaluation of fission gas release from spherical fuel during irradiation testing is critical to understand expected fuel performance under real reactor conditions. Online measurements of Krypton and Xenon fission products explain coated particle performance and contributions from graphitic matrix materials used in fuel manufacture and irradiation rig materials. Methods that are being developed to accurately evaluate fission gas release are described here together with examples of evaluations performed on irradiation tests HFR-K5, -K6 and EU1bis.


Author(s):  
Rong Liu ◽  
Jie-Jin Cai ◽  
Wen-Zhong Zhou ◽  
Ye Wang

ThO2 has been considered as a possible replacement for UO2 fuel for future generation of nuclear reactors, and thorium-based mixed oxide (Th-MOX) fuel performance in a light water reactor was investigated due to better neutronics properties and proliferation resistance compared to conventional UO2 fuel. In this study, the thermal, mechanical properties of Th0.923U0.077O2 and Th0.923Pu0.077O2 fuel were reviewed with updated properties and compared with UO2 fuel, and the corresponding fuel performance in a light water reactor under normal operation conditions were also analyzed and compared by using CAMPUS code. The Th0.923U0.077O2 fuel were found to decrease the fuel centerline temperature, while Th0.923Pu0.077O2 fuel was found to have a bit higher fuel centerline temperature than UO2 fuel at the beginning of fuel burnup, and then much lower fuel centerline than UO2 fuel at high fuel burnup. The Th0.923U0.077O2 fuel was found to have lowest fuel centerline temperature, fission gas release and plenum pressure. While the Th0.923Pu0.077O2 fuel was found to have earliest gap closure time with much less fission gas release and much lower plenum pressure compared to UO2 fuel. So the fuel performance could be expected to be improved by applying Th0.923U0.077O2 and Th0.923Pu0.077O2 fuel.


1985 ◽  
Vol 135 (1) ◽  
pp. 63-67 ◽  
Author(s):  
P.T. Elton ◽  
P.E. Coleman ◽  
D.A. MacInnes

2009 ◽  
Vol 283-286 ◽  
pp. 262-267
Author(s):  
M.T. del Barrio ◽  
Luisen E. Herranz

Fission of fissile uranium or plutonium nucleus in nuclear fuel results in fission products. A small fraction of them are volatile and can migrate under the effect of concentration gradients to the grain boundaries of the fuel pellet. Eventually, some fission gases are released to the rod void volumes by a thermally activated process. Local transients of power generation could distort even further the already non-uniform axial power and fission gas concentration profiles in fuel rods. Most of the current fuel rod performance codes neglects these gradients and the resulting axial fission gas transport (i.e., gas mixing is considered instantaneous). Experimental evidences, however, highlight axial gas mixing as a real time-dependent process. The thermal feedback between fission gas release, gap composition and fuel temperature, make the “prompt mixing assumption” in fuel performance codes a key point to investigate due to its potential safety implications. This paper discusses the possible scenarios where axial transport can become significant. Once the scenarios are well characterized, the available database is explored and the reported models are reviewed to highlight their major advantages and shortcomings. The convection-diffusion approach is adopted to simulate the axial transport by decoupling both motion mechanisms (i.e., convection transport assumed to be instantaneous) and a stand-alone code has been developed. By using this code together with FRAPCON-3, a prospective calculation of the potential impact of axial mixing is conducted. The results show that under specific but feasible conditions, the assumption of “prompt axial mixing” could result in temperature underestimates for long periods of time. Given the coupling between fuel rod thermal state and fission gas release to the gap, fuel performance codes predictions could deviate non-conservatively. This work is framed within the CSN-CIEMAT agreement on “Thermo-Mechanical Behaviour of the Nuclear Fuel at High Burnup”.


1999 ◽  
Vol 36 (11) ◽  
pp. 1101-1104 ◽  
Author(s):  
Hideo SASAJIMA ◽  
Jinichi NAKAMURA ◽  
Toyoshi FUKETA ◽  
Hiroshi UETSUKA

Sign in / Sign up

Export Citation Format

Share Document