Modelling and an improved NSGA-II algorithm for sustainable manufacturing systems with energy conservation under environmental uncertainties: a case study

Author(s):  
Behnam Ayyoubzadeh ◽  
Sadoullah Ebrahimnejad ◽  
Mahdi Bashiri ◽  
Vahid Baradaran ◽  
Seyed Mohammad Hassan Hosseini
Author(s):  
Khalid Mustafa ◽  
Kai Cheng

Increasing manufacturing complexity continues to be one of the most significant challenges facing the manufacturing industry today. Due to these rapid changes in manufacturing systems, one of the most important factors affecting production is recognized as the frequent production setup or changeovers, consequently affecting the overall production lead times and competitiveness of the company. Developing responsive production setup and process capability is increasingly important as product ranges and varieties in manufacturing companies are growing rapidly and, at the same time, production business models are operating more towards being customer-oriented. Furthermore, although different conventional methods have been used to manage complexity in production changeovers, sustainability and competitiveness development in a manufacturing company needs to be scientifically addressed by managing manufacturing complexity. In this paper, a sustainable manufacturing-oriented approach is presented in mind of managing manufacturing changeover complexities. A case study is carried out specifically concerning changeover complexity in a pharmaceutical company, aiming at minimizing complexities in production changeover and waste, increasing plant flexibility and productivity, and ultimately the sustainable competitiveness of the company in managing manufacturing changes.


Author(s):  
N.Sujith Prasanna ◽  
Dr.J.Nagesh Kumar

Energy cost is significant in many of the manufacturing activities. The efficiency of energy use is quiet low as there are substantial visible and hidden losses. Visible losses can be easily identified and corrective action can be taken. However hidden and indirect losses form a sizeable portion of the losses. Identifying these losses is not easy and requires an integrated approach which includes thorough study of process, operations and their interactions with energy use. Industries across sectors have implemented lean management principles which target various wastes occurring in the plant. This paper discusses case studies which highlight the exploitation of lean tools as a means for unearthing hidden energy saving potential that often go unnoticed. In addition to the energy savings which results in improved profits and competitiveness, the approach also aids the industry to pursue a path of sustainable manufacturing.


Author(s):  
Syed Waqar Raza ◽  
Ibrahim Mostafa Deiab

There is an increased interest in sustainability assessment of manufacturing systems and processes because of the growing global interest in sustainable manufacturing practices. The current sustainability assessment models present a holistic approach, e.g. LCA, without much focus on process specific details. This paper uses a ‘XSI’ approach for defining sustainability indices (e.g. Energy Sustainability Index, ESI). These sustainability metrics can quantify machining processes in terms of impact on the environment and power consumption in a flexible manner, so that various material removal processes can be rated on a uniform scale. In addition, the concept of Normalization, with respect to the ‘feature-of-interest’ is introduced, thus presenting a flexible rating system in terms of process types (turning, milling etc.) and perspectives (material removal, quality etc.). A user-friendly calculator is developed, which converts a set of inputs for the machining scenario into a set of measurable rating quantities and indices including but not limited to production rate, production cost, tool life/cost, energy consumption and environmental burden. This will enable the manufacturing engineer to make an informed decision about parameter selection and process design for sustainability. Machining of hard-to-machine materials such as Titanium Alloys is such a scenario, which is used as a case study to validate the proposed approach.


2021 ◽  
Vol 7 ◽  
pp. 2125-2137
Author(s):  
Kung-Jeng Wang ◽  
Teshome Bekele Dagne ◽  
Chiuhsiang Joe Lin ◽  
Bereket Haile Woldegiorgis ◽  
Hong-Phuc Nguyen

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Amirreza Hooshyar Telegraphi ◽  
Akif Asil Bulgak

AbstractDue to the stringent awareness toward the preservation and resuscitation of natural resources and the potential economic benefits, designing sustainable manufacturing enterprises has become a critical issue in recent years. This presents different challenges in coordinating the activities inside the manufacturing systems with the entire closed-loop supply chain. In this paper, a mixed-integer mathematical model for designing a hybrid-manufacturing-remanufacturing system in a closed-loop supply chain is presented. Noteworthy, the operational planning of a cellular hybrid manufacturing-remanufacturing system is coordinated with the tactical planning of a closed-loop supply chain. To improve the flexibility and reliability in the cellular hybrid manufacturing-remanufacturing system, alternative process routings and contingency process routings are considered. The mathematical model in this paper, to the best of our knowledge, is the first integrated model in the design of hybrid cellular manufacturing systems which considers main and contingency process routings as well as reliability of the manufacturing system.


2021 ◽  
Vol 13 (12) ◽  
pp. 6944
Author(s):  
Emma Anna Carolina Emanuelsson ◽  
Aurelie Charles ◽  
Parimala Shivaprasad

With stringent environmental regulations and a new drive for sustainable manufacturing, there is an unprecedented opportunity to incorporate novel manufacturing techniques. Recent political and pandemic events have shown the vulnerability to supply chains, highlighting the need for localised manufacturing capabilities to better respond flexibly to national demand. In this paper, we have used the spinning mesh disc reactor (SMDR) as a case study to demonstrate the path forward for manufacturing in the post-Covid world. The SMDR uses centrifugal force to allow the spread of thin film across the spinning disc which has a cloth with immobilised catalyst. The modularity of the design combined with the flexibility to perform a range of chemical reactions in a single equipment is an opportunity towards sustainable manufacturing. A global approach to market research allowed us to identify sectors within the chemical industry interested in novel reactor designs. The drivers for implementing change were identified as low capital cost, flexible operation and consistent product quality. Barriers include cost of change (regulatory and capital costs), limited technical awareness, safety concerns and lack of motivation towards change. Finally, applying the key features of a Sustainable Business Model (SBM) to SMDR, we show the strengths and opportunities for SMDR to align with an SBM allowing for a low-cost, sustainable and regenerative system of chemical manufacturing.


Sign in / Sign up

Export Citation Format

Share Document