scholarly journals Efficacy of early warning systems in assessing country-level risk exposure to COVID-19

2021 ◽  
Vol 12 (1) ◽  
pp. 2352-2366
Author(s):  
Abroon Qazi ◽  
Mecit Can Emre Simsekler ◽  
Muhammad Akram
2013 ◽  
Vol 10 (10) ◽  
pp. 12217-12254 ◽  
Author(s):  
G. Naumann ◽  
P. Barbosa ◽  
L. Garrote ◽  
A. Iglesias ◽  
J. Vogt

Abstract. Drought vulnerability is a complex concept that includes both biophysical and socio-economic drivers of drought impact that determine capacity to cope with drought. In order to develop an efficient drought early warning system and to be prepared to mitigate upcoming drought events it is important to understand the drought vulnerability of the affected regions. We propose a composite Drought Vulnerability Indicator (DVI) that reflects different aspects of drought vulnerability evaluated at Pan-African level in four components: the renewable natural capital, the economic capacity, the human and civic resources, and the infrastructure and technology. The selection of variables and weights reflects the assumption that a society with institutional capacity and coordination, as well as with mechanisms for public participation is less vulnerable to drought; furthermore we consider that agriculture is only one of the many sectors affected by drought. The quality and accuracy of a composite indicator depends on the theoretical framework, on the data collection and quality, and on how the different components are aggregated. This kind of approach can lead to some degree of scepticism; to overcome this problem a sensitivity analysis was done in order to measure the degree of uncertainty associated with the construction of the composite indicator. Although the proposed drought vulnerability indicator relies on a number of theoretical assumptions and some degree of subjectivity, the sensitivity analysis showed that it is a robust indicator and hence able of representing the complex processes that lead to drought vulnerability. According to the DVI computed at country level, the African countries classified with higher relative vulnerability are Somalia, Burundi, Niger, Ethiopia, Mali and Chad. The analysis of the renewable natural capital component at sub-basin level shows that the basins with high to moderate drought vulnerability can be subdivided in three main different geographical regions: the Mediterranean coast of Africa; the Sahel region and the Horn of Africa; the Serengeti and the Eastern Miombo woodlands in eastern Africa. Additionally, the western part of the Zambezi basin, the south-eastern border of the Congo basin and the belt of Fynbos in the Western Cape should also be included in this category. The results of the DVI at the country level were compared with drought disasters information from the EM-DAT disaster database. Even if a cause effect relationship cannot be established between the DVI and the drought disaster database, a good agreement is observed between the drought vulnerability maps and the number of persons affected by droughts. These results are a valuable contribution to the discussion on how to assess drought vulnerability and should contribute to the development of drought early warning systems in Africa.


2014 ◽  
Vol 18 (5) ◽  
pp. 1591-1604 ◽  
Author(s):  
G. Naumann ◽  
P. Barbosa ◽  
L. Garrote ◽  
A. Iglesias ◽  
J. Vogt

Abstract. We propose a composite drought vulnerability indicator (DVI) that reflects different aspects of drought vulnerability evaluated at Pan-African level for four components: the renewable natural capital, the economic capacity, the human and civic resources, and the infrastructure and technology. The selection of variables and weights reflects the assumption that a society with institutional capacity and coordination, as well as with mechanisms for public participation, is less vulnerable to drought; furthermore, we consider that agriculture is only one of the many sectors affected by drought. The quality and accuracy of a composite indicator depends on the theoretical framework, on the data collection and quality, and on how the different components are aggregated. This kind of approach can lead to some degree of scepticism; to overcome this problem a sensitivity analysis was done in order to measure the degree of uncertainty associated with the construction of the composite indicator. Although the proposed drought vulnerability indicator relies on a number of theoretical assumptions and some degree of subjectivity, the sensitivity analysis showed that it is a robust indicator and hence able of representing the complex processes that lead to drought vulnerability. According to the DVI computed at country level, the African countries classified with higher relative vulnerability are Somalia, Burundi, Niger, Ethiopia, Mali and Chad. The analysis of the renewable natural capital component at sub-basin level shows that the basins with high to moderate drought vulnerability can be subdivided into the following geographical regions: the Mediterranean coast of Africa; the Sahel region and the Horn of Africa; the Serengeti and the Eastern Miombo woodlands in eastern Africa; the western part of the Zambezi Basin, the southeastern border of the Congo Basin, and the belt of Fynbos in the Western Cape province of South Africa. The results of the DVI at the country level were compared with drought disaster information from the EM-DAT disaster database. Even if a cause–effect relationship cannot be established between the DVI and the drought disaster database, a good agreement is observed between the drought vulnerability maps and the number of persons affected by droughts. These results are expected to contribute to the discussion on how to assess drought vulnerability and hopefully contribute to the development of drought early warning systems in Africa.


1995 ◽  
Vol 34 (05) ◽  
pp. 518-522 ◽  
Author(s):  
M. Bensadon ◽  
A. Strauss ◽  
R. Snacken

Abstract:Since the 1950s, national networks for the surveillance of influenza have been progressively implemented in several countries. New epidemiological arguments have triggered changes in order to increase the sensitivity of existent early warning systems and to strengthen the communications between European networks. The WHO project CARE Telematics, which collects clinical and virological data of nine national networks and sends useful information to public health administrations, is presented. From the results of the 1993-94 season, the benefits of the system are discussed. Though other telematics networks in this field already exist, it is the first time that virological data, absolutely essential for characterizing the type of an outbreak, are timely available by other countries. This argument will be decisive in case of occurrence of a new strain of virus (shift), such as the Spanish flu in 1918. Priorities are now to include other existing European surveillance networks.


10.1596/29269 ◽  
2018 ◽  
Author(s):  
Ademola Braimoh ◽  
Bernard Manyena ◽  
Grace Obuya ◽  
Francis Muraya

2005 ◽  
Author(s):  
Willian H. VAN DER Schalie ◽  
David E. Trader ◽  
Mark W. Widder ◽  
Tommy R. Shedd ◽  
Linda M. Brennan

Sign in / Sign up

Export Citation Format

Share Document