Post-quake structural damage evaluation by neural networks: theory and calibration

2017 ◽  
Vol 23 (6) ◽  
pp. 710-727 ◽  
Author(s):  
Hichem Noura ◽  
Ahmed Mebarki ◽  
Mohamed Abed
2001 ◽  
Vol 17 (1) ◽  
pp. 89-112 ◽  
Author(s):  
Mauricio Sánchez-Silva ◽  
Libardo García

Potential damage assessment is fundamental for defining mitigation procedures and risk management strategies. Damage assessment involves the difficulties of defining, assessing, and modeling the variables involved, as well as handling uncertainty. Seismic damage estimation of structures does not only depend on the behavior of the structural system, but it involves other factors, which differ in nature. The paper presents a methodology for damage assessment of structures that combines systems theory, fuzzy logic, and neural networks. A feed-forward neural network supported on the systemic organization of information is used to assess the expected structural damage for a given earthquake. The methodology provides a very useful environment to consider the context of the building structure. The network has been trained using the damage observed in the recent earthquake that occurred in central Colombia. Several sets of structures were evaluated and the results compared to the damage observed. The model showed to be highly reliable and a good representation of experts' opinions. Computer software ERS-99 was developed and is currently being used for teaching and consulting purposes.


2017 ◽  
Vol 8 (2) ◽  
pp. 487-491 ◽  
Author(s):  
J. Martinez-Guanter ◽  
M. Garrido-Izard ◽  
J. Agüera ◽  
C. Valero ◽  
M. Pérez-Ruiz

New Super-High-Density (SHD) olive orchards designed for mechanical harvesting are increasing very rapidly in Spain. Most studies have focused in effectively removing the olive fruit, however the machine needs to put significant amount of energy on the canopy that could result in structural damage or extra stress on the trees. During harvest, a series of 3-axis accelerometers were installed on the tree structure in order to register vibration patterns. A LiDAR (Light Detection and Ranging) and a camera sensing device were also mounted on a tractor. Before and after harvest measurements showed significant differences in the LiDAR and image data. A fast estimate of the damage produced by an over-the-row harvester with contactless sensing could be useful information for adjusting the machine parameters in each olive grove automatically in the future.


2018 ◽  
Vol 51 (1) ◽  
Author(s):  
David Bru ◽  
Ricardo Reynau ◽  
F. Javier Baeza ◽  
Salvador Ivorra

2019 ◽  
Vol 19 (3) ◽  
pp. 661-692 ◽  
Author(s):  
Demi Ai ◽  
Chengxing Lin ◽  
Hui Luo ◽  
Hongping Zhu

Concrete structures in service are often subjected to environmental/operational temperature effects, which change their inherent properties and also inflict a challenge to their extrinsic monitoring systems. Recently, piezoelectric lead zirconate titanate (PZT)-based electromechanical admittance technique has been increasingly growing into an effective tool for concrete structural health monitoring; however, uncertainty in the changes of monitoring signals induced by temperature impact on concrete/PZT sensor would inevitably cause interference to structural damage detection, which adversely hinder its application from laboratory to engineering practice. This article, aiming at exploring the temperature effect on the electromechanical admittance–based concrete damage evaluation, primarily covered a series of theoretical/numerical analysis with rigorously experimental verifications. Three aspects of comparative studies were performed in theoretical/numerical analysis: (1) thermal-dependent parameters were inclusively evaluated in contribution to the electromechanical admittance characteristics via PZT-structure interaction models; (2) three-dimensional finite element analysis in multi-physics coupled field was employed to qualitatively assess the singular temperature effect on the electromechanical admittance behaviors of free-vibrated PZT, surface-bonded PZT/inside-embedded PZT coupled healthy concrete cubes; and (3) depending on the modeling of surface-bonded PZT-/inside-embedded PZT-cracked concrete cube, thermal effect on damage evaluation was addressed via quantification on the electromechanical admittance variations. In the experimental study, rigorous validation tests were carried out on a group of lab-scale concrete cubes, where surface-bonded PZT/inside-embedded PZT transducers were simultaneously employed for electromechanical admittance monitoring in view of thermal difference between concrete surface and its inner part. Correlation coefficient deviation value-based effective frequency shifts algorithm was also employed to compensate the temperature effect. Moreover, temperature effect was further testified on the monitoring of a full-scale shield-tunnel segment structure. Experimental results indicated that temperature triggered different behaviors of electromechanical admittance signatures for surface-bonded PZT/inside-embedded PZT transducers and contaminated the electromechanical admittance responses for damage detection. Structural damage severity level can be disadvantageously amplified by temperature increment even if under the same damage scenarios.


Sign in / Sign up

Export Citation Format

Share Document