scholarly journals CFD Technique for Estimating Flow Distortion Effects on Lidar Measurements When Made in Complex Flow Fields

2013 ◽  
Vol 7 (3) ◽  
pp. 324-333 ◽  
Author(s):  
M. Stickland ◽  
S. Fabre ◽  
T. Scanlon ◽  
A. Oldroyd ◽  
T. Mickelson ◽  
...  
Author(s):  
M. J. Braun ◽  
R. C. Hendricks ◽  
V. Canacci

A method to visualize and characterize the complex flow fields in simulated brush seals is presented. The brush seal configuration was tested in a water and then in an oil tunnel. The visualization procedure revealed typical regions that are rivering, jetting, vortical or lateral flows and exist upstream, downstream or within the seal. Such flows are engendered by variations in fiber void that are spatial and temporal and affect changes in seal leakage and stability. While the effects of interface motion for linear or cylindrical configurations have not been considered herein, it is believed that the observed flow fields characterize flow phenomenology in both circular and linear brush seals. The axial pressure profiles upstream, across and downstream of the brush in the oil tunnel have been measured under a variety of inlet pressure conditions and the ensuing pressure maps are presented and discussed.


1994 ◽  
Vol 76 (4) ◽  
pp. 1520-1527 ◽  
Author(s):  
J. E. Moore ◽  
S. E. Maier ◽  
D. N. Ku ◽  
P. Boesiger

In vivo measurements of blood velocity profiles are difficult to obtain and interpret, since the parameters that govern the normally highly complex flow situation may not be fully quantified or understood at the time of measurement. In vitro flow models have been used often to better understand vascular hemodynamics. The assumptions made in the design of these models limit the applicability of the results. In this study, in vitro flow measurements made in a carefully designed model of the abdominal aorta were compared with in vivo measurements obtained with magnetic resonance imaging. In the suprarenal aorta, the velocity profiles were mostly forward and axisymmetric in both the in vitro and in vivo cases. In the infrarenal aorta, there was extensive flow reversal noted near the posterior wall in both cases. In the aortic bifurcation, two peaks of flow reversal were noted near the lateral posterior walls, and M-shaped velocity profiles were observed in late diastole. The in vitro and in vivo measurements exhibited good qualitative agreement. The in vitro model was accurate in modeling the in vivo hemodynamics of the abdominal aorta. The complex phenomena observed in vivo were explained on the basis of knowledge gained from the in vitro study.


Author(s):  
Kozo Fujii ◽  
Akira Oyama ◽  
Nobuyuki Tsuboi ◽  
Moto Tsukada ◽  
Hirofumi Ouchi ◽  
...  

Flow fields of Mach number 2.2 jet impinging on an inclined flat plate are experimentally investigated using the Pressure Sensitive Paints (PSP) and Schlieren flow visualization. The flow filed structure is mainly determined by two geometrical parameters (nozzle-plate distance and plate angle against the jet) and one flow parameter (pressure ratio). The results suggest that all the observed flow fields can actually be classified into three types of flow structure based on the three parameters above. As an extension of the authors’ earlier work, experiments are carried out for higher plate angles. The new results show the effectiveness and limitation of the classification that we proposed. To find out the flow structure, some of the flow fields are computationally simulated. Good agreement of the pressure distributions with the experiment validates the simulation. Although analysis so far is limited, the result reveals three dimensional complex flow structure that created pressure peaks over the plate surface.


Polymer ◽  
2001 ◽  
Vol 42 (13) ◽  
pp. 5651-5659 ◽  
Author(s):  
Concetta Testa ◽  
Immacolata Sigillo ◽  
Nino Grizzuti

2004 ◽  
Vol 29 (11) ◽  
pp. 1403-1415 ◽  
Author(s):  
Pascale M. Biron ◽  
Colleen Robson ◽  
Michel F. Lapointe ◽  
Susan J. Gaskin

Sign in / Sign up

Export Citation Format

Share Document