Flow Field Analysis of Under-Expanded Supersonic Jets Impinging on an Inclined Flat Plate: Analysis With PSP/Schlieren Images and CFD Simulations

Author(s):  
Kozo Fujii ◽  
Akira Oyama ◽  
Nobuyuki Tsuboi ◽  
Moto Tsukada ◽  
Hirofumi Ouchi ◽  
...  

Flow fields of Mach number 2.2 jet impinging on an inclined flat plate are experimentally investigated using the Pressure Sensitive Paints (PSP) and Schlieren flow visualization. The flow filed structure is mainly determined by two geometrical parameters (nozzle-plate distance and plate angle against the jet) and one flow parameter (pressure ratio). The results suggest that all the observed flow fields can actually be classified into three types of flow structure based on the three parameters above. As an extension of the authors’ earlier work, experiments are carried out for higher plate angles. The new results show the effectiveness and limitation of the classification that we proposed. To find out the flow structure, some of the flow fields are computationally simulated. Good agreement of the pressure distributions with the experiment validates the simulation. Although analysis so far is limited, the result reveals three dimensional complex flow structure that created pressure peaks over the plate surface.

Author(s):  
Iris Z. Hu ◽  
Sanjay M. Correa

The three-dimensional unsteady flow in a gas turbine combustor was studied using CFD means. The flow structure around a fuel spoke is of interest not only because of pollutant issues, but also because of combustor operating issues such as combustion acoustics and potential flame-holding in the premixer. The CFD model was tested extensively in terms of grid density and lime-marching step size before the final calculation was made. It was shown that when a swirling flow crosses over a cylindrical fuel spoke, wake vortices are formed and a strong secondary flow is generated along the spanwise direction. A secondary vortex existed near the tip of the spoke. This complex flow structure affects the quality of fuel and air mixing and can be addressed by CFD-based design methods.


2005 ◽  
Vol 127 (4) ◽  
pp. 611-618 ◽  
Author(s):  
C. M. Su ◽  
D. Lee ◽  
R. Tran-Son-Tay ◽  
W. Shyy

The fluid flow through a stenosed artery and its bypass graft in an anastomosis can substantially influence the outcome of bypass surgery. To help improve our understanding of this and related issues, the steady Navier-Stokes flows are computed in an idealized arterial bypass system with partially occluded host artery. Both the residual flow issued from the stenosis—which is potentially important at an earlier stage after grafting—and the complex flow structure induced by the bypass graft are investigated. Seven geometric models, including symmetric and asymmetric stenoses in the host artery, and two major aspects of the bypass system, namely, the effects of area reduction and stenosis asymmetry, are considered. By analyzing the flow characteristics in these configurations, it is found that (1) substantial area reduction leads to flow recirculation in both upstream and downstream of the stenosis and in the host artery near the toe, while diminishes the recirculation zone in the bypass graft near the bifurcation junction, (2) the asymmetry and position of the stenosis can affect the location and size of these recirculation zones, and (3) the curvature of the bypass graft can modify the fluid flow structure in the entire bypass system.


Author(s):  
Brian R. Green ◽  
Randall M. Mathison ◽  
Michael G. Dunn

The effect of rotor purge flow on the unsteady aerodynamics of a high-pressure turbine stage operating at design corrected conditions has been investigated both experimentally and computationally. The experimental configuration consisted of a single-stage high-pressure turbine with a modern film-cooling configuration on the vane airfoil as well as the inner and outer end-wall surfaces. Purge flow was introduced into the cavity located between the high-pressure vane and the high-pressure disk. The high-pressure blades and the downstream low-pressure turbine nozzle row were not cooled. All hardware featured an aerodynamic design typical of a commercial high-pressure ratio turbine, and the flow path geometry was representative of the actual engine hardware. In addition to instrumentation in the main flow path, the stationary and rotating seals of the purge flow cavity were instrumented with high frequency response, flush-mounted pressure transducers and miniature thermocouples to measure flow field parameters above and below the angel wing. Predictions of the time-dependent flow field in the turbine flow path were obtained using FINE/Turbo, a three-dimensional, Reynolds-Averaged Navier-Stokes CFD code that had the capability to perform both steady and unsteady analysis. The steady and unsteady flow fields throughout the turbine were predicted using a three blade-row computational model that incorporated the purge flow cavity between the high-pressure vane and disk. The predictions were performed in an effort to mimic the design process with no adjustment of boundary conditions to better match the experimental data. The time-accurate predictions were generated using the harmonic method. Part I of this paper concentrates on the comparison of the time-averaged and time-accurate predictions with measurements in and around the purge flow cavity. The degree of agreement between the measured and predicted parameters is described in detail, providing confidence in the predictions for flow field analysis that will be provided in Part II.


Author(s):  
Fakhreddine S. Oueslati ◽  
Rachid Bennacer ◽  
Habib Sammouda ◽  
Ali Belghith

The natural convection is studied in a cavity witch the lower half is filled with a porous media that is saturated with a first fluid (liquid), and the upper is filled with a second fluid (gas). The horizontal borders are heated and cooled by uniform heat fluxes and vertical ones are adiabatic. The formulation of the problem is based on the Darcy-Brinkman model. The density variation is taken into account by the Boussinesq approximation. The system of the coupled equations is resolved by the classic finite volume method. The numerical results show that the variation of the conductivity of the porous media influences strongly the flow structure and the heat transfer as well as in upper that in the lower zones. The effect of conductivity is conditioned by the porosity which plays a very significant roll on the heat transfer. The structures of this flow show that this kind of problem with specific boundary conditions generates a complex flow structure of several contra-rotating two to two cells, in the upper half of the cavity.


2019 ◽  
Vol 196 ◽  
pp. 00018 ◽  
Author(s):  
Vasiliy Kocharin ◽  
Aleksandr Kosinov ◽  
Yuriy Yermolayev ◽  
Nikolay Semionov

The experimental study of the effect of weak shock waves on the supersonic boundary layer of the flat plate with a blunt leading edge (the radius of bluntness was r = 2.5 mm) with Mach number M = 2.5 and zero angle of attack was carried out. The measurements were carried out using the constant temperature anemometer. The paper presents a complex flow structure on the surface of the model. High-intensity peaks were found in the regions of the disturbed flow. Also the spectral analysis of perturbations was performed. It is found that the supersonic boundary layer on a flat plate is very sensitive to the effect of weak shock waves.


Author(s):  
Amirkhosro Kazemi ◽  
Eduardo E. Castillo ◽  
Oscar Curet ◽  
Ruben Hortensius ◽  
Pothos Stamatios

Abstract Mangrove roots produce complex flow structure interactions with their environment, which affect the nutrient, habitat and aquatic animals. Analysis of the flow structure behind the roots extends to a broad range of mangrove-inspired applications that provides understanding into complex flows encountered in unidirectional riverine flows. In this work, we modeled the mangrove roots with a cluster of rigid circular cylinders to investigate the vortex structure downstream of the models. The vortex organization of the patch of cylinder wakes was studied experimentally by time-resolved volumetric three-componential volumetric velocimetry (V3V) at Reynolds numbers 1014 and 3549. The results show that the vortex structure in the 3-D flow field reveals a regular shedding at Re = 1014, forming von Kármán vortices dominating the 3D motion. The flow structure behind rigid patches is coherent and the streamwise velocity remains unchanged. The regime for a flexible patch at Re = 3549 produces an intricate pattern where the multiple counter-rotating vortexes distorted substantially and forming a chain of rhombus-like vortex cells in the near wake. The information for the 3D flow feature provides useful information to a robust structure for Seawall erosion.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Brian R. Green ◽  
Randall M. Mathison ◽  
Michael G. Dunn

The detailed mechanisms of purge flow interaction with the hot-gas flow path were investigated using both unsteady computationally fluid dynamics (CFD) and measurements for a turbine operating at design corrected conditions. This turbine consisted of a single-stage high-pressure turbine and the downstream, low-pressure turbine nozzle row with an aerodynamic design equivalent to actual engine hardware and typical of a commercial, high-pressure ratio, transonic turbine. The high-pressure vane airfoils and inner and outer end walls incorporated state-of-the-art film cooling, and purge flow was introduced into the cavity located between the high-pressure vane and disk. The flow field above and below the blade angel wing was characterized by both temperature and pressure measurements. Predictions of the time-dependent flow field were obtained using a three-dimensional, Reynolds-averaged Navier–Stokes CFD code and a computational model incorporating the three blade rows and the purge flow cavity. The predictions were performed to evaluate the accuracy obtained by a design style application of the code, and no adjustment of boundary conditions was made to better match the experimental data. Part I of this paper compared the predictions to the measurements in and around the purge flow cavity and demonstrated good correlation. Part II of this paper concentrates on the analytical results, looking at the primary gas path ingestion mechanism into the cavity as well as the effects of the rotor purge on the upstream vane and downstream rotor aerodynamics and thermodynamics. Ingestion into the cavity is driven by high static pressure regions downstream of the vane, high-velocity flow coming off the pressure side of the vane, and the blade bow waves. The introduction of the purge flow is seen to have an effect on the static pressure of the vane trailing edge in the lower 5% of span. In addition, the purge flow is weak enough that upon exiting the cavity, it is swept into the mainstream flow and provides no additional cooling benefits on the platform of the rotating blade.


Sign in / Sign up

Export Citation Format

Share Document