scholarly journals Numerical study of wake and potential interactions in a two-stage centrifugal refrigeration compressor

2021 ◽  
Vol 15 (1) ◽  
pp. 313-327
Author(s):  
Chen Xu ◽  
Chuang Fan ◽  
Zhiping Zhang ◽  
Yijun Mao
Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 52
Author(s):  
José Niño-Mora

We consider the multi-armed bandit problem with penalties for switching that include setup delays and costs, extending the former results of the author for the special case with no switching delays. A priority index for projects with setup delays that characterizes, in part, optimal policies was introduced by Asawa and Teneketzis in 1996, yet without giving a means of computing it. We present a fast two-stage index computing method, which computes the continuation index (which applies when the project has been set up) in a first stage and certain extra quantities with cubic (arithmetic-operation) complexity in the number of project states and then computes the switching index (which applies when the project is not set up), in a second stage, with quadratic complexity. The approach is based on new methodological advances on restless bandit indexation, which are introduced and deployed herein, being motivated by the limitations of previous results, exploiting the fact that the aforementioned index is the Whittle index of the project in its restless reformulation. A numerical study demonstrates substantial runtime speed-ups of the new two-stage index algorithm versus a general one-stage Whittle index algorithm. The study further gives evidence that, in a multi-project setting, the index policy is consistently nearly optimal.


1999 ◽  
Vol 31 (04) ◽  
pp. 1095-1117 ◽  
Author(s):  
Hyun-Soo Ahn ◽  
Izak Duenyas ◽  
Rachel Q. Zhang

We consider the optimal stochastic scheduling of a two-stage tandem queue with two parallel servers. The servers can serve either queue at any point in time and the objective is to minimize the total holding costs incurred until all jobs leave the system. We characterize sufficient and necessary conditions under which it is optimal to allocate both servers to the upstream or downstream queue. We then conduct a numerical study to investigate whether the results shown for the static case also hold for the dynamic case. Finally, we provide a numerical study that explores the benefits of having two flexible parallel servers which can work at either queue versus servers dedicated to each queue. We discuss the results' implications for cross-training workers to perform multiple tasks.


2015 ◽  
Author(s):  
Rafael Dunaiski ◽  
Henrique Stel de Azevedo ◽  
Thiago Sirino ◽  
Rigoberto Eleazar Melgarejo Morales ◽  
Edgar Minoru Ofuchi

1999 ◽  
Vol 31 (4) ◽  
pp. 1095-1117 ◽  
Author(s):  
Hyun-Soo Ahn ◽  
Izak Duenyas ◽  
Rachel Q. Zhang

We consider the optimal stochastic scheduling of a two-stage tandem queue with two parallel servers. The servers can serve either queue at any point in time and the objective is to minimize the total holding costs incurred until all jobs leave the system. We characterize sufficient and necessary conditions under which it is optimal to allocate both servers to the upstream or downstream queue. We then conduct a numerical study to investigate whether the results shown for the static case also hold for the dynamic case. Finally, we provide a numerical study that explores the benefits of having two flexible parallel servers which can work at either queue versus servers dedicated to each queue. We discuss the results' implications for cross-training workers to perform multiple tasks.


2016 ◽  
Vol 108 ◽  
pp. 436-448 ◽  
Author(s):  
Zhaoqiu Ding ◽  
Lei Wang ◽  
Hongxia Zhao ◽  
Hailun Zhang ◽  
Chen Wang
Keyword(s):  

Author(s):  
Pang Xiaomin ◽  
Wang Xiaotao ◽  
Dai Wei ◽  
Hu Jianyin ◽  
Luo Ercang

A numerical study has been undertaken to predict quantitatively each of the non-isothermal reaction modes (stationary-state reaction, oscillatory cool flames and oscillatory two-stage and multiple-stage ignitions) associated with the oxidation of ethanal in a non-adiabatic well-stirred flow system (0.5 dm 3 ) at a mean residence time of 3 s. The kinetic scheme comprises 28 species involved in 60 reactions and it is coupled to the thermal characteristics through enthalpy change in each step, heat capacities of the major components and a heat transfer coefficient appropriate to heat loss through the reaction vessel wall. Spatial uniformity of temperature and concentrations is assumed, matching the experimental conditions. Very satisfactory accord is obtained between the experimentally measured and predicted location of the different reaction modes in the ( p - T a ) ignition diagram (where p is pressure and T a is temperature at ambient conditions), and the time-dependent patterns for oscillatory reaction agree with experimental measurements. The competition between degenerate branching and non-branching reaction modes is governed ultimately by the equilibrium CH 3 +O 2 ⇌CH 3 O 2 . The predicted behaviour is found also to be especially sensitive to the rate of decomposition of the acetyl radical CH 3 CO + M → CH 3 + CO + M. Corrections for its pressure dependence are essential if the predicted form of the oscillatory cool flame region in the ( p - T a ) diagram is to match the experimental results. Variations of the rate of this reaction also give new kinetic insight into the origins of complex oscillatory wave-forms for cool flames that have been observed experimentally. Relationships between the results of the detailed kinetic computations and the predictions from a three-variable, thermokinetic model are examined. This model is the simplest of all reduced schemes that makes successful predictions of two-stage ignition phenomena.


Author(s):  
Adel Ghenaiet

This paper presents a numerical study of particle laden gas flow through a two-stage hp axial turbine, by means of an in-house code based on the Lagrangian tracking model and the finite element method. As fly-ash solid particles trajectories and locations of impacts are predicted, the local erosion rates and the deteriorations of blades are assessed. The computed trajectories provide a detailed description of particles behaviors and reveal that particle impacts on the aft of vane pressure side usually lead to significant variations in the directions of particles to the next rotor blade, and subsequently particles impact the suction side. The plots of equivalent erosion rates indicate the vanes and blades locations which suffer more erosion. The first vane pressure surface is impacted more than any other component, but higher rates are seen at the top corner from trailing edge. The critical regions of erosion wear in the first rotor are observed over the top of blade leading edge extending along the tip as well as a rounding of the top corner from trailing edge. In the second vane, the regions of higher erosion are revealed over the last third of leading edge and the top corner extending along tip. The erosion in the second rotor is over a large area of suction side till the tip corner. The predicted areas of extreme erosion, also shown by the deteriorated profiles, are indicators for anticipated vanes and blades failures.


Sign in / Sign up

Export Citation Format

Share Document