scholarly journals Extracellular vesicles from human iPSC‐derived neural stem cells: miRNA and protein signatures, and anti‐inflammatory and neurogenic properties

2020 ◽  
Vol 9 (1) ◽  
pp. 1809064 ◽  
Author(s):  
Raghavendra Upadhya ◽  
Leelavathi N. Madhu ◽  
Sahithi Attaluri ◽  
Daniel Leite Góes Gitaí ◽  
Marisa R Pinson ◽  
...  
2021 ◽  
Vol 22 (3) ◽  
pp. 1375
Author(s):  
María Carmen Carceller ◽  
María Isabel Guillén ◽  
María Luisa Gil ◽  
María José Alcaraz

Adipose tissue represents an abundant source of mesenchymal stem cells (MSC) for therapeutic purposes. Previous studies have demonstrated the anti-inflammatory potential of adipose tissue-derived MSC (ASC). Extracellular vesicles (EV) present in the conditioned medium (CM) have been shown to mediate the cytoprotective effects of human ASC secretome. Nevertheless, the role of EV in the anti-inflammatory effects of mouse-derived ASC is not known. The current study has investigated the influence of mouse-derived ASC CM and its fractions on the response of mouse-derived peritoneal macrophages against lipopolysaccharide (LPS). CM and its soluble fraction reduced the release of pro-inflammatory cytokines, adenosine triphosphate and nitric oxide in stimulated cells. They also enhanced the migration of neutrophils or monocytes, in the absence or presence of LPS, respectively, which is likely related to the presence of chemokines, and reduced the phagocytic response. The anti-inflammatory effect of CM may be dependent on the regulation of toll-like receptor 4 expression and nuclear factor-κB activation. Our results demonstrate the anti-inflammatory effects of mouse-derived ASC secretome in mouse-derived peritoneal macrophages stimulated with LPS and show that they are not mediated by EV.


Organogenesis ◽  
2014 ◽  
Vol 10 (4) ◽  
pp. 365-377 ◽  
Author(s):  
Leonardo D’Aiuto ◽  
Yun Zhi ◽  
Dhanjit Kumar Das ◽  
Madeleine R Wilcox ◽  
Jon W Johnson ◽  
...  

2014 ◽  
Vol 275 (1-2) ◽  
pp. 190-191 ◽  
Author(s):  
Nunzio Iraci ◽  
Chiara Cossetti ◽  
Tim Mercer ◽  
Tommaso Leonardi ◽  
Emanuele Alpi ◽  
...  

2014 ◽  
Vol 26 (1) ◽  
pp. 210
Author(s):  
A. Gallegos-Cardenas ◽  
K. Wang ◽  
E. T. Jordan ◽  
R. West ◽  
F. D. West ◽  
...  

The generation of pig induced pluripotent stem cells (iPSC) opened the possibility to evaluate autologous neural cell therapy as a viable option for human patients. However, it is necessary to demonstrate whether pig iPSC are capable of in vitro neural differentiation similar to human iPSC in order to perform in vitro and in vivo comparative studies. Multiple laboratories have generated pig iPSC that have been characterised using pluripotent markers such as SSEA4 and POU5F1. However, correlations of pluripotent marker expression profiles among iPSC lines and their neural differentiation potential has not been fully explored. Because neural rosettes (NR) are composed of neural stem cells, our goal was to demonstrate that NR from pig iPSC can be generated, isolated, and expanded in vitro from multiple porcine iPSC lines similar to human iPSC and that the level of pluripotency in the starting porcine iPSC population (POUF51 and SSEA4 expression) could influence NRs development. Three lines of pig iPSC L1, L2, and L3 were cultured on matrigel-coated plates in mTeSR1 medium (Stemcell Technologies Inc., Vancouver, BC, Canada) and passaged every 3 to 4 days. For neural induction (NI), pig iPSC were disaggregated using dispase and plated. After 24 h, cells were maintained in N2 media [77% DMEM/F12, 10 ng mL–1 bovine fibroblast growth factor (bFGF), and 1X N2] for 15 days. To evaluate the differentiation potential to neuron and glial cells, NR were isolated, expanded in vitro and cultured for three weeks in AB2 medium (AB2, 1X ANS, and 2 mM L-Glutamine). Immunostaining assays were performed to determine pluripotent (POU5F1 and SSEA4), tight junction (ZO1), neural epithelial (Pax6 and Sox1), neuron (Tuj1), astrocyte (GFAP), and oligodendrocyte (O4) marker expression. Line L2 (POU5F1high and SSEA4low) showed a high potential to form NR (6.3.5%, P < 0.05) in comparison to the other 2 lines L1 (POU5F1low and SSEA4low) and L3 (POU5F1low and SSEA4high) upon NI. The NR immunocytochemistry results from Line L2 showed the presence of Pax6+ and Sox1– NRs cells at day 9 post-neural induction and that ZO1 started to localise at the apical border of NRs. At day 13, NRs cells were Pax6+ and Sox1+, and ZO1 was localised to the lumen of NR. After isolation and culture in vitro, NR cells expressed transcription factors PLAGL1, DACH1, and OTX2 through 2 passages, but were not detected in later passages. However, rosette cytoarchitecture was present up until passage 7 and were still Pax6+/Sox1+. NRs at passage 2 were cryopreserved and upon thaw showed normal NR morphology and were Pax6+/Sox1+. To characterise the plasticity of NRs, cells were differentiated. Tuj1 expression was predominant after differentiation indicating a bias towards a neuron phenotype. These results demonstrate that L2 pig iPSC (POUF51high and SSEA4low) have a high potential to form NR and neural differentiation parallels human iPSC neurulation events. Porcine iPSC should be considered as a large animal model for determining the safety and efficacy of human iPSC neural cell therapies.


2014 ◽  
Vol 56 (4) ◽  
pp. 609 ◽  
Author(s):  
Chiara Cossetti ◽  
Nunzio Iraci ◽  
Tim R. Mercer ◽  
Tommaso Leonardi ◽  
Emanuele Alpi ◽  
...  

2016 ◽  
Vol 1638 ◽  
pp. 57-73 ◽  
Author(s):  
Ying Pei ◽  
Jun Peng ◽  
Mamta Behl ◽  
Nisha S. Sipes ◽  
Keith R. Shockley ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52787 ◽  
Author(s):  
Yoshiomi Kobayashi ◽  
Yohei Okada ◽  
Go Itakura ◽  
Hiroki Iwai ◽  
Soraya Nishimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document