scholarly journals Whole-genome characterization of hemolytic uremic syndrome-causing Shiga toxin-producing Escherichia coli in Sweden

Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1296-1305
Author(s):  
Ying Hua ◽  
Milan Chromek ◽  
Anne Frykman ◽  
Cecilia Jernberg ◽  
Valya Georgieva ◽  
...  
2011 ◽  
Vol 74 (12) ◽  
pp. 2008-2017 ◽  
Author(s):  
M. O. MASANA ◽  
B. A. D'ASTEK ◽  
P. M. PALLADINO ◽  
L. GALLI ◽  
L. L. DEL CASTILLO ◽  
...  

The non-O157 Shiga toxin–producing Escherichia coli (STEC) contamination in carcasses and feces of 811 bovines in nine beef abattoirs from Argentina was analyzed during a period of 17 months. The feces of 181 (22.3%) bovines were positive for non-O157 STEC, while 73 (9.0%) of the carcasses showed non-O157 STEC contamination. Non-O157 STEC strains isolated from feces (227) and carcasses (80) were characterized. The main serotypes identified were O178:H19, O8:H19, O130:H11, and O113:H21, all of which have produced sporadic cases of hemolytic-uremic syndrome in Argentina and worldwide. Twenty-two (7.2%) strains carried a fully virulent stx/eae/ehxA genotype. Among them, strains of serotypes O103:[H2], O145:NM, and O111:NM represented 4.8% of the isolates. XbaI pulsed-field gel electrophoresis pattern analysis showed 234 different patterns, with 76 strains grouped in 30 clusters. Nine of the clusters grouped strains isolated from feces and from carcasses of the same or different bovines in a lot, while three clusters were comprised of strains distributed in more than one abattoir. Patterns AREXSX01.0157, AREXBX01.0015, and AREXPX01.0013 were identified as 100% compatible with the patterns of one strain isolated from a hemolytic-uremic syndrome case and two strains previously isolated from beef medallions, included in the Argentine PulseNet Database. In this survey, 4.8% (39 of 811) of the bovine carcasses appeared to be contaminated with non-O157 STEC strains potentially capable of producing sporadic human disease, and a lower proportion (0.25%) with strains able to produce outbreaks of severe disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yujie Zhang ◽  
Yen-Te Liao ◽  
Alexandra Salvador ◽  
Vivian C. H. Wu

Shiga toxin (Stx), encoded by stx genes located in prophage sequences, is the major agent responsible for the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and is closely associated with the development of hemolytic uremic syndrome (HUS). Although numerous Stx prophage sequences have been reported as part of STEC bacterial genomes, the information about the genomic characterization of Stx-converting bacteriophages induced from STEC strains is relatively scarce. The objectives of this study were to genomically characterize two Stx-converting phages induced from environmental STEC strains and to evaluate their correlations with published Stx-converting phages and STEC strains of different origins. The Stx1-converting phage Lys8385Vzw and the Stx2-converting phage Lys19259Vzw were induced from E. coli O103:H11 (RM8385) and E. coli O157:H7 (RM19259), respectively. Whole-genome sequencing of these phages was conducted on a MiSeq sequencer for genomic characterization. Phylogenetic analysis and comparative genomics were performed to determine the correlations between these two Stx-converting phages, 13 reference Stx-converting phages, and 10 reference STEC genomes carrying closely related Stx prophages. Both Stx-converting phages Lys8385Vzw and Lys19259Vzw had double-stranded DNA, with genome sizes of 50,953 and 61,072 bp, respectively. Approximately 40% of the annotated coding DNA sequences with the predicted functions were likely associated with the fitness for both phages and their bacterial hosts. The whole-genome–based phylogenetic analysis of these two Stx-converting phages and 13 reference Stx-converting phages revealed that the 15 Stx-converting phages were divided into three distinct clusters, and those from E. coli O157:H7, in particular, were distributed in each cluster, demonstrating the high genomic diversity of these Stx-converting phages. The genomes of Stx-converting phage Lys8385Vzw and Lys19259Vzw shared a high-nucleotide similarity with the prophage sequences of the selected STEC isolates from the clinical and environmental origin. The findings demonstrate the genomic diversity of Stx-converting phages induced from different STEC strains and provide valuable insights into the dissemination of stx genes among E. coli population via the lysogenization of Stx-converting phages.


2021 ◽  
Vol 27 (5) ◽  
pp. 1509-1512
Author(s):  
Kenichi Lee ◽  
Atsushi Iguchi ◽  
Kazuhiro Uda ◽  
Sohshi Matsumura ◽  
Isao Miyairi ◽  
...  

2012 ◽  
Vol 75 (2) ◽  
pp. 408-418 ◽  
Author(s):  
LOTHAR BEUTIN ◽  
ANNETT MARTIN

An outbreak that comprised 3,842 cases of human infections with enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 occurred in Germany in May 2011. The high proportion of adults affected in this outbreak and the unusually high number of patients that developed hemolytic uremic syndrome makes this outbreak the most dramatic since enterohemorrhagic E. coli (EHEC) strains were first identified as agents of human disease. The characteristics of the outbreak strain, the way it spread among humans, and the clinical signs resulting from EAHEC infections have changed the way Shiga toxin–producing E. coli strains are regarded as human pathogens in general. EAHEC O104:H4 is an emerging E. coli pathotype that is endemic in Central Africa and has spread to Europe and Asia. EAHEC strains have evolved from enteroaggregative E. coli by uptake of a Shiga toxin 2a (Stx2a)–encoding bacteriophage. Except for Stx2a, no other EHEC-specific virulence markers including the locus of enterocyte effacement are present in EAHEC strains. EAHEC O104:H4 colonizes humans through aggregative adherence fimbrial pili encoded by the enteroaggregative E. coli plasmid. The aggregative adherence fimbrial colonization mechanism substitutes for the locus of enterocyte effacement functions for bacterial adherence and delivery of Stx2a into the human intestine, resulting clinically in hemolytic uremic syndrome. Humans are the only known natural reservoir known for EAHEC. In contrast, Shiga toxin–producing E. coli and EHEC are associated with animals as natural hosts. Contaminated sprouted fenugreek seeds were suspected as the primary vehicle of transmission of the EAHEC O104:H4 outbreak strain in Germany. During the outbreak, secondary transmission (human to human and human to food) was important. Epidemiological investigations revealed fenugreek seeds as the source of entry of EAHEC O104:H4 into the food chain; however, microbiological analysis of seeds for this pathogen produced negative results. The survival of EAHEC in seeds and the frequency of human carriers of EAHEC should be investigated for a better understanding of EAHEC transmission routes.


Sign in / Sign up

Export Citation Format

Share Document